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ABSTRACT

A method of computing reliable Gaussian and mean curvature sign-map descriptors from the

polynomial approximations of surfaces was demonstrated. Such descriptors which are invariant

under perspective variation are suitable for hypothesis generation.

A means for determining the pose of constructed geometric forms whose algebraic surface

descriptions are non-linear in terms of their orienting parameters was developed. This was

done by means of linear functions which are capable of approximating non-linear forms and

determining their parameters. It was shown that biquadratic surfaces are suitable companion-

linear forms for cylinder approximation and parameter estimation. The estimates provided the

initial parametric approximations necessary for a non4inear regression stage to fine tune the

estimates by fitting the actual non-linear form to the data.

A hypothesis-based split-merge algorithm for extraction and pose determination of cylinders

and planes which merge smoothly into other surfaces was developed. It was shown that all

split-merge algorithms are hypothesis-based.
,-

A finite-state algorithm for the extraction of the boundaries of" run-length regions was de-

veloped. The computation takes advantage of the run list topology and boundary direction

constraints implicit in the run-length encoding.
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CHAPTER I

INTRODUCTION

Image understanding is a field rich in prospect, approaches and methodologies. This fact

is attested to by the many journals, conferences, books and other publications on the subject.

There are myriads of papers describing such aspects of computer vision as feature detection,

image segmentation, image acquisition technologies, stereo vision, interest operators of all kinds,

planar surface fitting, curved surface recognition, object modeling, matching methodologies,

object recognition schemes etc. There does not seem to be a want of research attempts. Yet,

computer vision systems developed to date remain fragile and the oft mentioned integration of

the various research areas into a cogent whole remains ellusive. A simple task was used to focus

the research of this thesis. A robot equipped with a laser range scanner is required to recognize

an object from a library of objects and to determine its three-dimensional pose to a degree of

accuracy which permits a hole to be drilled in the object to specification (e.g. a perpendicular

hole through the side of the cylindrical portion of a machine part an inch from the end of the

cylinder). No system to date is able to perform this task.

This author believes that much of the problem facing computer vision lies in the paucity

of techniques to integrate the various components. Broadly speaking, all of computer vision

research may be divided into three classes. First, there are the bottom-up image-based (low-level)

operations; second, there are the top-down knowledge intensive (high-level vision) processes;

and, third, there is the representation of the data in a manner suitable for the computer vision



task.Mostcomputervisionobjectrecognitionsystemsthusfardevelopedemphasizeoneof these

threeaspects.Thishasproveninsufficient.Evensystemswhich incorporateall thenecessary

componentsareinvariablydominatedby oneof thecomponents.Knowledge-drivensystems

dependa lot on top-downprocessesto drive theinterpretationof featuresgeneratedby the

bottom-upprocesses.Such'complete'systemsarescarce,andtheytoo,havemetwith limited

success.Leftto itself,thedeficienciesof thetop-downcomponentandtheinabilitytoexploitthe

strengthsof bottom-upprocessesultimatelyoverwhelmthestrengthsof thetop-downcomponent.

Whenoneexaminesthethreefolddivisionof computervisionasstated,onefindsthatthe

edgesof demarcationbetweenhigh andlow levelvisionwantcleardefinition. It is easyto

talkaboutthedetectionof edges,for example,aslow-levelvisionandthematchingof extracted

silhouettesof objectstomodelsilhouettesashigh-levelvision,butthedistinctionblurswhenone

discussessuchprimitivesor featuresasgeneralized-cylinders[46,48,49,51], extendedGaussian

images[12, 100,52, 102,103,126],extendedHough'stransformsonplanarfaces[12,64,68],

smoothedlocalsymmetries[44] etc. Forthesefeaturesto becomputed,knowledgeof various

degreesaboutthesceneis required.Evenwith thecomputationof edges,the applicationof

scalespaceedgedetectors[18, 61], directiondependentedgedetectors[53, 54] andmulti-

scaleboundaryclassification[7, 71] requiresceneknowledgeaswell. Thedistinctionis not

inconsequential.Theprocessof extractingfeaturesfromimagesisoneof abstractinginformation

fromthepixeldata.Thelackof ameansof organizingthisprocessof abstractioncontributesto

thebinaryhigh-lowlevelvisionarchitectureandthescarcityof techniquesto buildhierarchical

visualreasoningsystems.

This dissertation details an abstraction-based paradigm in which a hierarchical process of

successive refinement may be implemented. While the paradigm outlines a significantly different

approach to field of object recognition than those contained in the literature, a narrow goal was

chosen to focus the research and to flesh out the paradigm. The goal was to develop technologies



whichwill allowa robotequippedwitha laserrange imaging device to perform the recognition

and pose determination task outlined in the beginning of this section. An abstraction hierarchy

is advanced for range image understanding along with techniques for making refinements to

traverse the hierarchy.

1.1 What is Abstraction?

A fundamental task in bridging the chasm between sensed data and an understanding of the

scene is that of coalescing massive quantities of numeric data into symbolic entities or features.

i

These features provide a semantic description of the objects or scene contained in the sensed

data. Under the bipartite regimen in which the low-level system components generate features

for interpretation by the high-level system components, it is not uncommon that a single step

separates the feature detection from object recognition. A framework is necessary for multi-

levelled reasoning with the data.

The venerated solution to problems of this nature in computer science is to define a hierarchy

into which the processes and data may be arranged. Within such a hierarchy, the operative task

is to provide, in higher layers of the hierarchy, organization to subsets of data in lower layers of

the hierarchy. Such a hierarchy of abstraction may be applied to model the implicit hierarchies

of most computer vision systems.

Abstraction is a condensation of data into units of increasing semantic significance

by the application of certain assumptions. The degree of abstraction is measured by

the specificity of the assumptions necessary for its computation.

By this definition, the more specific the assumption made to arrive at the abstraction of a particular

unit (feature or object), the more abstract is that unit. The assumptions made to perform a

particular abstraction is called its abstracting assumptions. As an illustration of such hierarchical

abstraction, consider the example of the computation of shape from contours [15, 42, 43, 98, 111].
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First,edgepointsmaybecomputedin anintensityimagebytheapplicationof anoperatorthat

extractspointsof discontinuityin the intensityvalues. Theabstractionin this caseis based

uponthegenera/assumptionsthattrueedgepointsof a three-dimensionalobjectcoincidewith

suchdiscontinuities,that theobjectsurfaceis lambertianandoften,that the illuminationis

approximatedby a distantpointlight source.Thegenerationof closedcontoursby edgepoint

linking is basedupona strongerassumptionthatthe edgepointsarecorrect(sometimesby

examiningof edgebright-to-darkdirections)andthatthecontoursmustbeclosedandis thus

higherin thehierarchy.Thecomputationof thesurfaceshapefromthecontoursis basedupon

theevenstrongerassumptionthattheclosedcontourbelongsto asurface,[often]thatthesurface

is planarandthatthesurfaceshapeis regular.

1.2 Models and Abstraction

The notion of models is very closely tied to abstraction. Models are overarching units into

which data are coalesced. They possess both the capacity to account for data and the ability to

impute meaningful interpretation upon the data accounted for. Models may take many forms.

They may be mathematical descriptions (e.g. polynomial patches), relation descriptions (e.g.

graph-based descriptions of surfaces in an object or syntactic pattern strings), property vector

descriptions (e.g. feature vectors used in statistical pattern recognition) etc.

Since data may be coalesced into models which account for and impute meaningful interpre-

tation upon data, a hierarchy of abstraction can be implemented as a hierarchy of models.

We shall now contrast the abstraction-based paradigm against the usual formulation of object

recognition systems which we shall call the feature-model paradigm.

1.2.1 The Feature-Model Paradigm

For the sake of discussion we shall call the system described in figure 1. I the feature-model

paradigm which divides computer vision into three major components: feature extraction, model
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Figure 1.1: Block diagram of a basic model-based image understanding system.

building or representation, and model matching.

Feature extraction addresses the issue of deriving features pertinent to the recognition process

from sensed data. It encompasses the problem of the selection of appropriate features and the

computation necessary to glean these features from the sensed imagery. Model building or

representation is the task of describing the objects to be recognized in a manner which facilitates

their recognition. Model matching is the process in which the features extracted from sensed

data are mapped into the set of object models so as to determine the presence of objects and

their pose.

The three major components are insufficient in themselves to solve the image understanding

problem. The interaction among the components is of utmost importance.

The problems with this basic system are twofold. First, the system is open-looped so that

the object model is not able to guide the feature extraction process. Second, in the task of

three-dimensional image understanding, features tend to deform with varying viewpoint owing

to occlusion and perspective change.

Detailed discussions on model-based object recognition systems can be found in [19, 32, 60].



Feature Extraction in the Feature.Model Approach

The feature extraction process of the feature-model configuration shown in Figure 1.1 operates

autonomously from the rest of the system. A set of features with a corresponding set of detection

operators is chosen to generate input to the recognition system which tries to match these features

to those in a set of models. Examples of such features are straight edges, surface curvature,

polyhedra, planar surfaces, Gaussian sphere characteristics [9, 41, 52, 58, 59, 75, 100, 102, 117,

118, 126, 130, 133] etc. Features are often chosen for their ability to discriminate among objects

which the system is designed to recognize. The designated feature detection operator is run over

the input images to obtain feature points.

The problem with the feature extraction operations in the context of thefeature-rnodel system

of Figure 1.1 is that they fail to utilize the knowledge contained in the system's model base. This

failure to exploit the model level knowledge is paid for in terms of the imprecision of the detected

features and the high cost of exhaustive feature extraction. All feature detectors are sensitive to

noise and aberrations in the illumination and sensing environment. The application of a general

purpose edge detector, for example, will generate many 'false edges' in addition to the portions

of edges truly present. False edges will then have to be removed and true edges completed by

some process which links the fragmented edge segments and fills in missing segments. Finally,

the still vast quantity of data in the incompletely segmented edge image is passed to the matcher

to be matched with the object models. During matching, attempts are sometimes made to separate

the sheep of actual edges from the goats of extraneous edges (actually the matcher often has to

breed new sheep by completing disconnected true edges). These are potentially combinatorially

explosive undertakings. Furthermore, in the event of erroneous segmentation, the system has no

way to direct the feature extraction module to produce an alternate segmentation and no'avenue

to guide that resegmentation process. The lack of guidance (what to look for and where to look)

also precludes the use of specialized feature detectors.



Object Modeling and Representation

The second problem with the image understanding model of Figure 1.1 resides in the object

modeling and representation module labelled Model Builder. In the task of three-dimensional

image understanding, features tend to deform with varying viewpoint owing to occlusion and

perspective projection. A possible solution to this problem is the use of multiview representations.

This representation has been termed variously as aspect graphs, visual potentials, characteristic

views etc. [56, 57, 76, 77, 95, 136]. The impetus behind these approaches is that they simplify

the matching process. Each characteristic view can be thought of as a different model, and the

matching problem is reduced to finding a characteristic view model which satisfies the features

found in the sensed data. The problem with such approaches is that the storage requirements

increase dramatically with complexity of the objects being modeled as more characteristic views

need to be maintained. The subsequent increase in the number of views stored also increases the

combinatorics of the matching process. A good discussion of multiview representations can be

found in [121]. Another approach is that embodied in ACRONYM. ACRONYM makes use of

a volumetric representation in which all objects are decomposed into a set of generalized cones.

These cones are described by a length, an orientation, a cross-sectional shape and a sweep rule

which determines the variation in the cross-sectional area (of the same shape) along the length of

the cone [46, 48, 49, 51]. Since the perspective projections of cones yield generalized ribbons,

ACRONYM is able to 'predict' the perspective view of the object on-the-fly. As will be discussed

later, ACRONYM's modeling scheme has its shortcomings as well.

Matching

Most feature-model systems represent the objects to be recognized as graphs or as feature

vectors. In graph representation the nodes usually correspond to features of the object and the

arcs indicate the spatial relationships between these features. The object recognition .problem is



thusreducedto oneof matchingof pairsof graphs.Examplesof suchsystemsaredescribed

in [37,38,39,46,48,49,51,58,59,80, 152,153].Of these,ACRONYM[46,48,49,51] is

themostsignificantattemptata completeimageunderstandingsystem.In patternclassification

techniques,featurevectorsaremadeup of numericevaluationsof features.Recognitionis

performedusinga similaritymeasurebetweentheobservedfeaturevectorcomputedfrom the

dataandthemodelfeaturevectors.

A majorproblem with traditional matching techniques (with the acception of global statistical

featur_ vector methods which will be discussed later) is that they attempt to match all available

models with the detected features sequentially. The matching complexity is thus given by the

product of the number of models and the number of features generated by the feature extraction

process. Given the large number of real and false features detected, this can prove very expensive.

Another problem with the system of Figure 1.1 is that without interaction between the knowledge

contained in the model base and the feature extraction module, the matching process distances

itself too rapidly from the image data. The matcher knows only of the symbolic data on the

graphs to be matched and any error in the construction of either graph is irreversible.

1.2.2 The Abstraction-Based Paradigm

Figure 1.2 is the conceptual block diagram of an abstraction based recognition configuration.

We shall call this the abstraction-based recognition paradigm. Instead of a spontaneous feature

extractor which operates indiscriminately upon the data, features are dealt with as abstractions

of the data which, upon verification, become data (albeit more abstract than the data it models)

upon which the system makes further abstractions. This allows the system to use more specific

feature models which are not generally applicable to all data. This specificity-generality contrast

and the trade-offs between them are discussed in the ensuing section.

The abstraction-based paradigm employs a hypothesis-tea strategy to distill abstractions
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Figure 1.2: Block diagram of the abstraction-based paradigm.

out of the data. The object models and the scene cooperate to generate assumptions which

translate to particular interpretations (or abstractions) of subsets of the data. These abstractions

are instantiated and tested to see if the assumption applies. The resulting accepted abstractions

are both incorporated into the data-set and used to refine the model-base with greater context

information (e.g. pose information, presence of particular objects or sub-parts of objects serve

to constrain what objects are likely).

Assumptions may be generated either by the application of general mathematical and physical

principles (e.g. three-dimensional edges occur at discontinuities in the first derivatives in an

image) or by model-scene specific inferences (e.g. by indexing or matching). Initially, when

there is no information to make specific inferences as to what is in the scene, general assumptions

are applied. The features thus generated provide new scene specific information which allows

stronger assumptions to be drawn.

The difference between the abstraction-based paradigm from traditional hypothesis-test tech-

niques operating under the feature-model approach is that the feature-model approach reasons

with precomputed features while the abstraction-based approach reasons about the features which
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needto becomputed.

Thefeature-model approach attempts to impose organization on precomputed features to see if

they match models. The hypothesis-test strategy when applied in a feature-model system performs

recognition by forming hypotheses to explain how the precomputed features may be organized

to conform to the models and testing the hypotheses. The abstraction-based paradigm makes

explicit assumptions upon which features are computed. Upon computation of the hypothesized

features, the abstraction-based paradigm tests to see if the hypotheses were correct and uses

the resulting information to make further assumptions on the data. The key difference is thus

that the abstraction-based paradigm is able to work with the directly image data throughout the

abstraction process, computing features directly on the data. In the feature-model paradigm, the

feature extractor computes all the features for which it has been programmed 'spontaneously',

leaving the interpretation of this data to the 'high-level' system. The feature-model system is

thus unable to compute features which are relevent only to specific portions of an image and

under specific circumstances.

Figure 1.2 serves only as a conceptual block diagram The purpose of this thesis is to provide

the processing tools and concepts for making the necessary abstractions from range data, not to

design a control architecture to implement such a system.

1.3 Generality vs. Specificity

Up to this point, nothing has been said about the models which constitute the units into

which data is coalesced. The models to which data may be matched may be global, logical and

relational or numeric in nature (see figure 1.3).

Global matching is usually framed as the matching of feature vectors describing an object

to a set of model feature vectors. Such features include two dimensional eccentricity, aspect

ratio, Fourier descriptors, area, perimeter length etc. computed globally across the entire object.

Statistical pattern recognition techniques are by and large global matching techniques.
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Figure 1.3: Classes of matching processes in computer vision

Logical/relational matching considers iconic objects (or features) detected in a scene and the

relations, both spatial (e.g. above, below, parallel to etc.) and logical (e.g. member-of, is-a etc.)

among them. It attempts to find a corresponding set of icons and relations in a model which

matches those found in a scene. Examples of this are graph matching techniques such as graph

isomorphism, star graph and interpretation tree approaches and sequential parsing schemes such

as in syntactic pattern recognition.

Numerical model matching takes one of two forms. The first is an explicit application of some

numeric description of an object or feature to the data to obtain the parameters in the description

which would account for the data. Examples of this are Hough transforms to extract straight line

segments (the straight line equation is applied for the transformation), explicit fitting (usually

least-squares) of surface or contour descriptors like bi-variate polynomials, splines, quadrics etc.

The second is the application of some general model to extract image properties without explicit

fitting or determination of the model parameters. Examples of this are the application of various

edge models which describe edges as discontinuities in the intensity distribution of an image,

morphological filtering techniques to extract smooth regions etc.
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Themodelsto whichdataarematchedmaybegeneralin thesensethattheycanbeappliedto

abroadcategoryof objectsorsignals.Edgemodels,polynomialsurfacesandsurfacecurvature

computationsfall into thiscategory.Suchmodelshavesubstantialmatchingcapabilityin that

theyarecapableof matchinglargevarietyof data,but, theyhavelittle discriminatingpower.

Specificmodels,ontheotherhand,areadeptatdiscriminatingdataarisingfromdifferentobjects

beingviewed,but theyare incapableof matchinga varietyof objectsin thedata. Examples

of specificmodelsarecylindricalsurfaces,planes,circles,straightlinesetc.Themostspecific

modelthatcanbematchedto datarepresentinganobjectis themodelof theobjectitself.

Thereneedsto bea tradeoff betweengeneralandspecificmodelsin a computervision

system.It maybeobservedthatgeneralmodelsapplygeneralassumptionsfor theircomputation

andmatchingwhilespecificmodelsrelyonmoreparticularassumptions.This tradeoff canbe

achievedwithinanabstractionhierarchy.Successiverefinementor abstractionpermitsa system

to dealwith datain eachlayerof thehierarchyin a modularfashionwhile maintainingthe

relevanceof theprocessingandpermittingincreasingsemanticattributiontocollectionsof data.

Eachlayer'understands'whatlowerlevelsof processingpresentsto it andpresentsits resultsto

higherlevelsof processing,andtheinputdatais maintainedateachlayereitherfor forwarding

to higherlayersor for reprocessing.Eachlayeralso'understands'whatit is askingof lower

processinglevels.

1.4 Hypotheses in Image Understanding

Specificity is the objective of the recognition. What is desired is the model which is related

by identity to the object being viewed. By our earlier discussion, however, the abstraction of

highly specific entities from data requires very particular assumptions about the scene. Apart

from the trivial case of matching a small number models to a scene which may contain no other

objects (where the specifying assumption is precisely that only one of a small set of objects may

be in view), it is impossible to match all combinations of data to all combinations of models.
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Figure 1.4: The general sequence of computation in computer vision

A logical solution would be a process of assumption (or abstraction) refinement to bridge the

progression from the general to the specific.

The key element for the introduction of greater specificity is greater understanding of the

context (information about the scene at large). A hypothesis-test strategy would facilitate such

context enriching interaction among the layers for computer vision.

Within the hypothesis-test paradigm, data at lower levels of the hierarchy provide evidence

for the forming of higher level overarching structures, while higher level structures serve as

hypotheses for the organization of sub-sets of lower level data which may be tested at the lower

levels of the hierarchy. The former problem (hypothesis generation by evidence) is that of

indexing [83, 84, 85, 116, 117, 118] and the latter is that of hypothesis verification.

Figure 1.4 shows the general sequence of computation in computer vision. One begins

with the data (in image format), processes it (still in image format), extracts features from the

processed data, and then attempts to recognize objects in the scene by manipulating the features.

Objects could then be manipulated to construct the scene. This progression is one of abstraction.

This thesis proposes that the 'feature layer' ought to be divided into two portions. The first



I4

is context free in its computation while the second is context sensitive.

Context free features are features whose computation is bas_l upon generally applicable

assumptions of physics, illumination and/or mathematics. Such assumptions include contiguity

of surfaces, step edges at intensity/range discontinuities, etc. Examples of such features are

spline surfaces, polynomial surfaces, curvature-based classifiers, edge points, edge segments etc.

Context sensitive features are features or groups of features whose computation or detection is

dependent upon the content of the scene. This strict dependence upon specific hypothesis-driven

assumptions is necessary in order to overcome the combinatorics of matching (fitting) all data

to all possible features and to overcome the complexities introduced by perspective variation.

Examples of such features axe constructed forms (e.g. planes, cylinders, cones, etc.), perspective

sensitive forms (e.g. silhouettes, oriented surfaces etc.), feature relationships (not all possible

relationships are entertained) etc.

A hypothesis-test strategy thus provides a platform for the computation or detection of any

context sensitive feature or object.

1.5 Thesis Statement

In a nutshell, this thesis advances an abstraction-based paradigm which makes explicit the

process of imposing assumptions on data. This general to specific refinement process provides

a mechanism to proceed gracefully from low level to high level vision processes and vice

versa. The task of specifying what is in a scene becomes one of making stronger and stronger

assumptions about what is in the image. This process of assumption and abstraction furnishes

a path between symbolic descriptors of objects in the scene to their numeric specification. The

lack of this interaction has been a major hindrance to the development of robust vision systems.

Other major contributions of this thesis are: the demonstration of a robust method of comput-

ing reliable surface curvature descriptors; the development of a means of determining the pose of

constructed geometric forms whose algebraic surface descriptions are non-linear in terms of their
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orientingparameters;theanalysis,proofanddemonstrationthatbiquadraticsurfacesarecapable

of approximatingcylindersandestimatingtheir three-dimensionalpose;andthedevelopment

of a hypothesis-basedsplit-mergealgorithm(it wasshownthat all split-mergealgorithmsare

hypothesis-based)for extractionandposedeterminationof cylindersandplaneswhichmerge

smoothlyintoothersurfaces.

1.6 Thesis Layout

The focus of this chapter is the introduction of the theme of abstraction as an ordering

principle for hierarchical computer vision and the discussion of the interaction between abstraction

and hypothesis generation and test strategies. Chapter II overviews previous work in three-

dimensional image understanding; chapter III lays out the underlying strategy employed in the

work of this thesis for three-dimensional image understanding; chapter IV reviews and discusses

the necessary background material (mathematics and algorithms) for the techniques employed

in this thesis; chapter V details the split-merge segmentation technique employed; chapter VI

describes the process of estimating and fitting cylindrical surfaces; chapter VII discusses a fast

algorithm for extracting boundaries from run-length region descriptions; chapter VIII describes

the experimental work performed in the course of the research; and, conclusions are drawn in

chapter IX.



CHAFFER II

REVIEW OF PREVIOUS WORK

The image understanding problem can be defined as the interpretation of sensed data to yield

useful information about the environment being sensed. Such information should be sufficient

to describe what is being seen and how the things seen are related to each other in space. The

concept of usefulness immediately casts the problem within the framework of task performance

(a system to recognize and understand paint defects on an automobile may not be able to solve

the problem of the orbital docking of spacecraft). In three-dimensional image understanding, the

prevailing task is to obtain the description of a scene in three-dimensional space. This description

comprises the identity of objects and the determination of their poses in space.

The identification of objects is ultimately the determination that a sub-set of the sensed data is

accounted for by certain models of prototypes or classes of objects with the consequent inference

that the data arises from (is the result of) the presence in the scene of an article which is an

instance of the model. The pose of an object is the location and orientation of that object in

space.

The term model-based image understanding needs to be better defined. In reality, all recog-

nition systems make use of models in some way[60]. Statistical pattern recognition systems,

for example, generally employ object models described as vectors of global features (eg. area,

perimeter, principle axes etc.) which are matched against corresponding vectors obtained from

the image being processed [79, 113, 161, 170]. Even if only a single critical feature were used

16
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in a recognitionprocess,thereis still thenotionthatthecriticalfeatureselectedis a modelof

theobjectto berecognized.

Model-based image understanding is a recognition paradigm which is driven by the models

of the objects to be recognized. These models are explicitly declared, and they guide the system

in its interpretation of the sensed data. Examples of such systems will be discussed later in this

chapter.

2.1 From Whence 3D Data

Three-dimensional data can be obtained in two ways. The first is from explicit range encoding

sensors. These sensors produce dense image arrays, each pixel of which is a measurement

of the distance of the corresponding surface point in three dimensional space to the sensor's

coordinate system. Examples of such sensors are laser range finders and structured light laser

range finders [33, 108, 141, 146, 171, 172], triangulation sensors [16, 142], light stripe sensors

[6, 8, 37, 39, 95, 97] etc. A comprehensive discussion of explicit range encoding sensors is

found in [27].

The second method of obtaining range data is to extract distance information from image

data which does not explicitly contain range information. Each pixel of this image contains

information (e.g. intensity) about the corresponding point in three-dimensional space. Since

information about the three-dimensional configuration of the scene is extracted by the application

of certain cues, such techniques are often called shape-from-x techniques (where x is the cue

applied). Examples of these techniques are: shape from shading [67, 101, 135] shape from

texture [2, 114, 167], shape from binocular stereo [I1, 14, 40, 127] shape from contour, [15, 42,

43, 98, 111], etc. Extensive discussions on these techniques can be found in [1, 19].

It is not our purpose, here, to survey the various techniques involved in generating range or

depth data. We do need, however, to have a cursorial understanding of what such data are before

we can proceed to determine the processes necessary to recognize objects and their poses from
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thedata.Owingto theavailabilityof rangeinformationfromthedata,onemayeasilybelulled

intobelievingthatthebulkof theproblemin three-dimensionalimageunderstandingis solved.

Wedo,afterall, haveinformationaboutwhereeverythingis. This is far fromthetruth. The

onlyinformationexplicitlyavailablein thedataishowfarpardcularpointsarefromthesensor's

coordinatesystem.Thereis no structureor shapein thedata.For thisreason,shape-from-x is

a misnomer. What these techniques provide are either depth points (usually sparse) or estimates

of local surface normals at, or intrinsic to, each point in the image. One thinks of shape as such

extrinsic descriptors as circular arc, straight line etc. in two-dimensions and cylinders, spheres,

planes etc in three-dimensions. At best, shape-from-x techniques generate data equivalent to

that available from explicit range sensors. To emphasize this lack of structure in range imagery,

Barrow and Tenenbaum called such data intrinsic images.

What is lacking is organizational structure other than pixel adjacency. According to our

abstraction-based model, we need to frame sub-groupings of this range information into seman-

tically significant units.

2.2 Reconstruction and Recognition

Schemes for representing of data for three-dimensional image understanding may be divided

into three classes. The first deals with the projection of the three-dimensional form onto two

dimensions; the second concentrates on the visible surfaces in range imagery; and, the third

emphasizes the volumetric aspects of the objects present in the data. The work of this thesis

employs surface representations. In this section, all three representation schemes will first be

given eursorial treatment to see how they fit within the scheme of things in three-dimensional

image understanding. Surface representation will then be discussed in greater extent with an

emphasis on making a distinction between the reconstruction of surfaces and their application to

recognition.
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2.2.1 Representation Schemes

Two-dimensional representations of three-dimensional data usually take the form of edge

segments and/or regions (points grouped using some measure of likelihood that they belong to

the same surface) within the image. Global or local recognition schemes may be applied to match

these features with models. Global techniques usually extract feature vectors from regions which

are expected to represent whole objects and match these to similar model feature vectors. The

feature elements may comprise such measurements as area, ratio of area to perimeter, moments,

centroids, aspect ratio etc. In local techniques, edge segments and regions are often related to each

other in the form of graphs which are matched with models. The literature abounds with papers

on two-dimensional object representation and recognition schemes. While it is not our purpose

to review such techniques, it is appropriate to state how these two-dimension schemes may be

(and have been) applied to three-dimensional image understanding. Multiview representations

[56, 57, 76, 77, 95, 136] are means of mapping three-dimensional objects into multiple two-

dimensional representations. These representations are termed variously as aspect graphs, visual

potentials, characteristic views etc. The idea is to store each view of the object as a separate

two-dimensional model and to perform the matching using these models. Sripradisvarakul and

Jain [154] discuss how these representations may be generated for curved objects.

The task of organizing data in three-dimensional image understanding is often viewed in

terms of representing the visible surfaces and edges (discontinuities) in the range imagery. This

is the most natural representation for range data in the sense that it operates directly on the data

and characterizes the pixels in the range images. This representation is favoured by this author

and is the one applied in this thesis, and will be discussed in the next section.

Volumetric representations of data and models for recognition attempt to describe objects as

three-dimensional entities. Representations include generalized cylinders used in ACRONYM

(to be discussed later), constructive solid geometry, voxel and octree representations. While such
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representationshavebeenproposed,theonly significantworkdonein objectrecognitionwith

volumetricrepresentationis ACRONYM.

2.2.2 Surface Representations

Range imagery is data-rich across object surfaces in the images. Much work has been done

on the extraction and characterization of these surfaces.

First of all, what is a surface.'? A reasonable first approximation may be that a surface is a

smooth three-dimensional manifold where smoothness is defined as the lack of discontinuities in

the normals to the surface. This, is however, not always the case. The hood of an automobile

is often considered a single surface although there may be an ornamental ridge-like protrusion

down the middle of the hood. Two planes melding at an obtuse angle via a smooth chamfer may

not possess any abrupt surface discontinuities, but we have just said that they are two planar

surfaces. A more general definition has to take into account the kind of surface one expects to

find. This will be dealt with in greater detail later in this thesis. This being said, smooth surfaces

as defined before are one type of surfaces one might have great interest in finding. It is this kind

of surface with which much of the literature deals.

Surface characterization schemes may be divided into two classes. The first represents the

exact location of the surface and the second details how the surface bends in space. While

the latter curvature-based representation has many attractive qualities such as rotation, scale

and translation invariance, little real work has been done using the representation for object

recognition. The main reason for this is that noise in digital data renders the computation of first

and second partial derivatives of the surface, on which curvature depends, unstable [25]. The

theoretical work on curvature-based surface characterization will be discussed later in this thesis

when surface curvature is discussed. In this section, we shall concentrate on representations

which describe the location of surfaces in three-dimensional space.



21

Thetaskof describingthelocationof asurfacein three-dimensionalspaceisoftenframedas

oneof fittingrangedatato a surfacedescription.Thesesurfacesmaybebivariatepolynomials

(planesbeingthemostprominentclass),splines,quadrics,finiteelementgrids,etc.

Besland Jain [26,22,25] fittedbivariatepolynomialsof theform:

2; "" _ cixny k-n

k=O \n=0 /

where O is the order of the polynomial and {ci} are the polynomial coefficients. A variable

order, region-growing strategy was employed to obtain regions of the lowest order which will fit

smooth regions. This system was used in the course of this thesis and will be treated in greater

detail in a later chapter when the background material (mathematics and algorithms) of this thesis

is discussed.

Terzopoulos [157, 158, 159, 160] applied afinite element grid technique to perform surface

reconstruction. The reconstruction is performed at multiple resolutions as a process of cooperative

relaxation processes which minimize a tension measurement between the reconstructed point and

the data. The work which can be applied to sparse range data can be viewed as one of smoothing

range imagery.

Duda et.al. [66] did some of the early work on incorporating range and reflectance data

from a laser range finder in scene analysis. Their system extracts planar surfaces from registered

reflectance and range imagery under a paradigm in which easy to extract surfaces are obtained

before harder ones are extracted, and where reliable regions are extracted before questionable

regions are analyzed.

The system begins by removing all pixels where jump boundaries are detected in the image.

These are segmented into connected regions. From these the set of starting planes are determined.

Such planes are defined by their unit normal and distance from the origin of the coordinate system.

The easiest and most reliable to compute of these are horizontal planes whose normal vector is

completely defined leaving the distance from the origin (the z value of the plane) to be determined.
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Horizontalplanesaredetectedby analyzingthehistogramof the z values in the depth image.

Vertical planes have one component of the orientation (incline) of their normal vectors defined,

leaving the determination of the distance from the origin and the horizontal component of the

normal vector. A Hough transform is used to detect these vertical planes and their unknown

parameters. For arbitrarily oriented planes, it is assumed that the surface reflectance is constant,

and histogram analysis of the reflectance image is used to detect these planes and least squares

fitting is applied to determine its parameters.

Once the starting planes have been determined, a refinement process is initiated, beginning

with the 'most reliable' of these starting planes. First, a planar 'sandwich' or band is computed

around some tolerance of the estimate of the plane. All pixels within this three-dimensional

'sandwich' are collected and grouped into connected regions. These regions are then refined by

the application of three tests: the size filter (small regions are rejected); a plane fitted to the

region must be reasonably close to the original estimate; and, a planarity test based on the mean

and standard deviation of the distance of the points from the best fitted plane is applied.

Bolles and Fischler [37] describe the application of random sample consensus (RANSAC),

a robust statistical fitting strategy, to the recognition and pose determination of cylinders in

structured light imagery. The RANSAC strategy begins with the initiation of a model using

a minimum number of points, followed by an iterative least-squares process to improve the

estimates while recruiting more points that fit the model.

For the recognition of cylinders the fitting of data to

parameters is avoided by applying the observed that the

a non-linear combination of

planar biquadratic function

(a + bz + cy + dzy + ez 2 + f z _ = 0) (which is linear) is capable of fitting conic sections. Since

the illuminated contour in a light stripe image is a planar cross-section of imaged objects, the

quadratic function is capable of estimating the ellipses which constitute oblique sections of cylin-

ders. The ellipses which are extracted applying RANSAC to the planar biquadratic fit to the data
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arethenusedto estimatetheposeof thecylinders.This time,RANSACis againusedin the

non-linearleast-squarescombinationof theellipses.

Thissystemperformsentirelyin thecontext-sensitivedomain.Theobjectsimagedarecylin-

dersof knownradiusandthefitting locatesthesecylinders.Theapplicationof thebiquadratic

fit to estimatetheellipsesandthecombinationof theellipsesapplyonly tocylinders.

Hendersonand Bhanu[93,94,29,30]describea three-pointseedmethodfor extracting

planarsurfacesfrom rangedata.Themethodbeginsby extractinga setof three-dimensional

(x,y,z),pointsandorganizingthemin a k-d tree, using the x, y, z values of each point as the

k keys. Sets of three non-collinear points close to each other are selected and to define seed

planes. These seed planes are then grown by recruiting sets of points from the k-d tree. Since

the system handles convex polyhedra, convexity is applied as a constraint on the three-point seed

candidates.

Potmesil [137, 138] fitted rectangular bicubic parametric patches to range data. The work

concentrates on the integration of such patches computed in surfaces from different viewl_ints.

One may think of each such patch as a bicubic tile. These tiles are merged using a quadtree

structure. Each level in the quadtree contains nodes which represent patches at a quarter of the

resolution of the next lower level. Curvature maxima are used to match patches from different

viewpoints in the integration process.

Fan et. al [74, 73] apply quadric surface patches of the form:

az 2+by 2 + cz 2 + d:cy + eyz + f zz + gz + hy + iz = 0

in their work on three-dimensional object recognition. The segmentation of the range image into

different regions is performed by boundary detection. Boundaries are detected by first computing

the 'surface curvature' across the entire image and then looking for zero-crossings and extrema in

the curvature map. The boundaries and patches are used in a graph matching scheme (boundaries

are arcs and patches are nodes) which will be described later in this chapter when recognition
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systemsarereviewed.At thispoint,it is sufficientto notethattheprincipalcurvaturesof the

quadricpatchesarecomputedto determineif thepatchis planar.

2.2.3 Comments

Thesetechniquesleadto representationsof thesurfacesto a degreeat whichtheycanbe

reconstructed.Thepaperslistedarerepletewith impressivereconstructedimages.Theproblem

is thatlittle hasbeendonewithsuchsurfacesin objectrecognitionapartfromFanet. al. and

theworkonpolyhedra.Thereasonis thattherepresentationscanbe thoughtof asyet another

formof datato beanalyzed.Theparametersdescribingthesesurfacerepresentationsareoftena

collectionof numberswhichin manycasesarewellnigh incomprehensible.Theonlysemantic

informationimmediatelyavailableis thatthesurfacesaresmooth.Thereasonfor this is that

thesesurfacesestimatethepointwiselocationof thesurface,andnotwhatthesurfacereallyis.

Theexceptionsarein thecasesof theworkonpolyhedraandthequadric-basedworkof Fanet.

al.

Thereasonpolyhedra-basedrecognitionsystemsareviableis thatpolyhedraaremadeup

of planarsurfaces.Theplaneis an interestingdegeneratememberof polynomialsurfacesin

thattheyoftenrepresentwhatthesurfacereallyis (e.g. a sideof a file cabinet).Systemsfor

recognitionof polyhedraexploit thefactthatonly polyhedralobjectsareexpected.Onemay

thinkof plane detectors as specific feature extractors.

The reasons that quadrics are applicable for object recognition in the work by Fan et. al. are

twofold. First, the quadric patches served only to label regions as 'smooth-surface' which served

as attributed nodes for their graph structure. Second, they exploited the fact that quadrics fined

well to cylinders (although this was not explicitly stated as the reason for using quadrics) and

computed the orientations of cylinders as the directions of least curvature of quadric surfaces.

It appears that they refitted planes to patches with zero principal curvatures to determine the
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orientationof planes.Again,quadricsmapspecifically(andnarrowly)into theclassof real

surfacesin theobjectsetto berecognized.The restriction of the object set makes this possible.

If the object set included such objects as toroids and bending pipes which are not amenable to

quadric description, the system will not work.

2.3 Recognition Systems

We shall now discuss a sampling of three-dimensional recognition systems based upon ap-

proaches which include the use of extended Gaussian images, Hough transforms, extended Hough

transforms, graph matching, hypothesis and test and blackboard architectures.

2.3.1 Some Recognition Systems

Andress and Kak 1988

Andress and Kak [4] describe an approach to interpret three-dimensional scenes when the

two-dimensional projection (orthographic or perspective) of the structures in the scene can be

generated. The two-panel, six-level blackboard system utilizes Dempster-Shafer formalism to

perform inexact reasoning in a hierarchical space. All objects must be polyhedral as the system

employs only linear line segments and edges as its basic building block for recognition.

The levels of the blackboard contain information in the form of: Vertices, segments, edges,

faces, objects and scenes in the data panel and vertices, edges, faces, objects and scenes in the

model panel. Three knowledge sources (KS) operate on the data. The data-reduction KS cleans

up the line segments generated by the edge detectors, the grouper KS groups lower level data

into data elements at increasingly higher levels, and the labeler KS performs element labeling

and confidence estimation for different hypotheses generated by the grouper KS.

The basic primitive features utilized by the system are the line segments provided by edge

detectors. The abstracting principle assumption applied is simply that discontinuities in intensity
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values are significant. Linear edges (the system operates only with linear edges) are generated

by grouping collinear line segments which are close together. Collinearity and edge contiguity

are again independent of the scene. Vertices are the ends of line segments and linear edges. This

abstraction, based upon basic geometry, which is context free by our definition. The grouper KS

basically performs evidenced-based hypothesis generation building higher abstraction structures

from lower.

Faces and objects can be recognized in the system by context sensitive assumptions. To

generate faces, the labeler KS associates model panel structures with the higher level data panel

structures. Faces in the model panel elicit faces in the corresponding layer in the data panel by

hypothesizing the mapping between model panel edges and data panel edges. Clearly, such a

process is context sensitive and driven by the model, otherwise, the possible orderings of frag-

mented edges to .form faces is combinatorially explosive. The object layer structures coalesced

from the face and edge layers are similarly context sensitive. Object poses are determined at the

object and scene layers.

Archibald and Rioux 1986

The WITNESS system [5] recognizes polyhedral objects in range imagery by matching objects

for which 'view models' are available. These 'surface adjacency graph' (region adjacency graph

of planar surface regions) models are sensor-tuned in that they are generated 'showing' the system

a prototype in stable resting positions. Each view model is rotation independent within the plane

of support for the object. A two stage hypothesis generate-and-test strategy was employed. A

set of possible models are first identified using 'generic information'. The resulting hypothesized

surface adjacency graph models are then matched in turn.

The basic feature applied in this work are planar patches. First, the surface gradient at each

point of the image is computed using a gradient operator which performs implicit Gaussian
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smoothing.Theresultinggradient-spaceimagesarethensegmentedin regionsof similarsurface

normals- theseconstituteplanes.Suchanoperationfortheidentificationof planesiscontextfree,

dependingon themathematicalpropertiesof planesforits computation.(Thisis notstrictlytrue

if surfacesof othertypeswereallowedsincecurvedsurfacesof largecurvatureandperspective

warpingwhichresultfrominadequatecalibrationcanmakeplanesextremelyhardto identify

reliably.)

Boththegenerationof themodelsub-setandthematchingof thesurfaceadjacencygraphs

areextremelycontextsensitive.Genericview modelproperties(e.g. thenumberof faces,the

totalprojectedsurfacearea,andthemaximumheightin a view)areutilizedin the first stage

to trim thenumberof candidateviewmodels.In thetestingof thehypotheses,surfacesin the

dataarematchedto modelsurfacesfollowinga constraint-guidedprotocolwhichdetermines

the orderof matchingto reducethecombinations.The reliability constraint determines that

surfaces with large areas, low magnitude of slope and high compacmess are matched first. The

structural constraint dictates that surfaces in the models are bound to data surfaces by order of

adjacency and the relational constraint tests the matching by examining the differences in such

geometric properties as surface area and slope. Obviously, one must know the set of objects

being considered before either of these can be performed.

The emphasis of this system is on the high level processing. Such a system will quickly be

overwhelmed as the complexity and number of objects to be recognized increase. It will also be

sensitive to variance in the context by such artifacts as noise, occlusion and calibration error.

Archibald and Merritt 1989

The system performs pose determination for a block and a robotic grapple mechanism, each

of which has clearly defined straight edges of surface discontinuity (as opposed to occlusion

edges as would occur when one scans off the rounded edge of a cylinder - in which case there
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wouldbean 'edge'in thedatawherethere is none on the object). Range data is acquired using

the NRCC range profile sensor which takes data along a 'stripe' mounted on a robot manipulator

wrist.

The system makes use of discontinuities in the average inclination of the surface to the sensor

origin for successive readings along the scan line to extract valley edge points. Cliff edge points

are detected as 'horizon' points. When the change in average inclination exceeds some threshold,

the cliff edge detector kicks in to find the last point visible from some point at the 'base' of

the cliff. The abstracting assumptions applied are general, exploiting the basic properties of

the geometry of triangles in the computation based on surface inclination and exploiting the

characteristics of the scanner (laser light travels in straight lines) in cliff edge detection.

The models maintained by the system are sets of parametric lines defined on and object-

centered coordinate system. The edge points computed by the context-free computations form

the input to the subsequent hypothesis-test based context-sensitive computation. An edge point

is selected and an assumption is made to map it onto one of the model's edges. A second point

is picked, and using the distance from the first point as a criterion, a set of candidate mappings of

the point to the set of lines in the model is computed. A third point is selected, and its possible

mappings to the model's lines are computed in like manner using the hypothesized second points

in the model. The hypotheses which cannot 'close the triangle' (with all three points resting on

lines in the model) are rejected. The accepted three-point sets yield transformation hypotheses

to map the sensed points to the model's edges. If more than 80% of the points are close to a

model's edge after transformation, the hypothesis is accepted.

One may think of the three-point sets as triangle features subtended at the comers by edges

of the wire frame of the object. The possible three-point combinations would become too large

if the model were not used to constrain the hypotheses. These triangles are thus context-sensitive

based upon the assumption of the wireframe and suggested by the evidence provided by the edge
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points.

Asada et. al. 1988

Asada et. al. [8] present a system to extract planar surfaces and their orientations and singly

curved surfaces from light stripe images. Surface normals (instead of range) are computed

directly from the scene images with a light pattern projected into the viewing space (actually

from the edges of the light-to-dark transitions). These normals are then plotted in gradient-space

and the clustering of the data points are examined to determine the types of surfaces present and

their orientations. Planar surfaces result in data clustered around a point in gradient-space while

cylindrical surfaces appear as points clustered around a line. The location of these cluster points

and the orientation of these lines determine the pose of these surfaces.

This technique is sensitive to errors introduced by the assumption of orthographic projection

(the gradient-space plots do not cluster so well under perspective projection), accuracy of the

stripe locations, camera lens calibration, non-parallelism of the light stripes, the non-uniformity

of the camera pixels and the inaccuracy of the light-to-dark shadow-edge separation owing to

surface reflectance and angle. The system is incapable of providing depth information and parallel

planes become easily confused.

No discussion is made of using the features for object recognition. Because the assumptions

made in the segmentation are based solely on the clustering of surface points in gradient-space,

the method is context free. However, context is implicitly imported in that all surfaces are

assumed to be planes or singly curved (cylinders).

Augusteijn and Dyer 1986

Augusteijn and Dyer [9] present a model-based system which performs three-dimensional

recognition and pose determination of planar point patterns or polygons. The algorithm computes
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thecorrectsurfaceorientationaswell asthecorrespondencebetweenthesetof modelfeatures

andtheset of imagefeatures.The system,whichassumesorthographicprojection,employs

an iterativealgorithmwhichsimultaneouslydeterminesthecorrespondencebetweenthemodel

anddatapointsandcomputesthesurfaceorientationof thepointpattern.The principle behind

the algorithm is that if two lines in an image under orthographic projection are mapped to two

corresponding lines in the model object plane (all objects are planes), the rotational transform

(tilt and slant) between the image plane and the object planes can be determined.

The system identifies the points of interest (usually high curvature points like comers) and

computes the angles they make with the image plane coordinate axes with the centroid of the

object as origin (the images are thresholded to obtain a binary pattern). Four of these are paired

with four points in the model (with four corresponding angles with the object plane axes centered

at the centmid of the model). This yields two equations with the angles of tilt and slant as the

two unknowns which converge iteratively to a solution if one exists. If there is no convergence,

the match fails and other points are selected.

Although Augusteijn and Dyer did not describe the pre-processing in the system (the binary

images appear to have been synthetically generated and the points of interest were picked by

hand), one may imagine that some histogram-based thresholding and comer detection processing

may be performed. These are to a large degree independent of the object being viewed (assuming

constant surface reflectance, illumination etc.)

The system is almost completely context sensitive, depending on the spatial distribution of

model points to determine correspondence and orientation.

Owing to the high context sensitivity of the system (jumping directly from points to recogni-

tion, correspondence and orientation), the system is expected to be fragile. It would be sensitive

to inaccuracies in the computation of the centroid (which in turn depends on the thresholding

to obtain the binary image). Because it mixes both the need for a global feature (centroid),
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andlocalfeatures(comers),it will sufferfromtheweaknessof bothapproaches.For example,

centroidcomputationsareextremelydifficultunderocclusion.

BallardandSabbah1983

BallardandSabbah[12]describeanextendedHoughtransform-basedapproachusingcon-

straint tables to detect the presence of a known object and to compute its pose (orientation,

translation and scale from its canonical description). The class of objects considered are polyhe-

dra. The problem is framed as one of determining the transformation between the object-centered

frame and the viewer-centered frame. The data is assumed to be orthographic projection and it

is assumed that the image has been segmented into edge components for the two-dimensional

case and into planar components for the three-dimensional case.

The algorithrn decouples the interdependence among scale, orientation and translation. In

orthographic projection, scale is dependent only on the depth map. For the computation of

orientation, the extended Gaussian map (basically an attributed edge or surface normal plot for

two and three dimensions respectively) is used.

For the two-dimensional problem, the length of the edges is used to attribute the normal

directions of the edges in the Gaussian map. The offset between the extended Gaussian map of

the image and that of the object centered model is the rotation offset of the object in the image.

The Hough accumulator array is one of possible orientations. Edge lengths are used to match

image edges to model edges and the difference between the orientations of the model edge and

the data edge are entered into the array. The maximum in the accumulator array corresponds

to the object orientation. For translation in two-dimensions, (the image and model are assumed

to be of the same orientation and scale) the accumulator array is a two-dimensional array in z

and _/. For each data edge, the z and !1 offsets of the model edge with the same orientation

and length from the object frame origin are summed with the z and _/ locations of the data
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edgerespectivelyto provideanindexintotheaccumulatorarrayelement which is incremented.

When all the edges have been considered, the maxima in the accumulator array corresponds to

the offset of the viewer frame from the object frame.

Orientation determination in three dimensions is more complicated although the principle

is similar to that in two dimensions. The normal of each plane defines a planar locus for the

orientation of the viewer frame from the object frame. Nine parameters (three in each dimension)

need to be determined by the extende4:l Hough transform. For each match between a model

normal and data normal, the loci of three sets of three direction cosines may be ascertained. The

Hough accumulator entries along this entire loci are incremented (there are three accumulators

corresponding to the three sets). The three dimensional translation Hough transform is identical

to that in two dimensions but for the added dimension.

The context free features in this work are the edges and planar surfaces which can be computed

using general assumptions of surface discontinuities and surface normal coherence.

The entire extended Hough transform technique is clearly context sensitive (defined for

particular object models).

Bastuscheck et. al. 1986

Bastuscheck et. al. [16] presented work on the recognition of general three-dimensional

space curves using registered range and intensity imagery obtained using a structured light optical

triangulation sensor. The system matches an observed curve with a model curve, recovering the

displacement (in terms of arclength) between the curves for which the curves are 'closest' (in

terms least squares difference). The algorithm attempts a match for each unit of displacement,

picking the best match. It was also shown that the least squares equation for the match can be

reduced to three summations and a trace computation of a convolution (which is computed via

fast Fourier transform) for each possible displacement.
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Thesystemdid not attemptto solvetheproblemof obtaininggoodrangeinformationat

three-dimensionaledges.Theexperimentsreportedrecognized'edges'of constructionpaper

figuresgluedto thesurfaceof terra-cottaflowerpots.

Apart fromthecomputationof edgepoints,thissystemis completelycontextsensitiveat-

temptingto matchedgedatadirectlyto modelcurves.Giventhespaceof possibleboundary

configurations,thissystemis expectedto befragileandnotscalableto largerobjectsets.

Bhanu1982, 1984

t

Bhanu [29, 30] presents a system to perform three-dimensional scene analysis on laser range

data, yielding the identity and orientation of the object in the scene. Objects are represented as

polyhedra and the features applied in the matching are planar surfaces extracted by a three-point

seed algorithm. Models are generated from images taken of a physical prototype, and the planar

faces detected in each view are arranged in 'neighbor' tables. There is no indication in the papers

that the sets of faces in the different views are unified.

Recognition task is framed as one of obtaining a consistent labelling between faces extracted

from image data from an unknown view and model faces. A stochastic labelling technique

applied. The compatibility of a data faces to model faces were computed in two stages - the

first considering the matches pairwise (two model faces and two data faces, one model-data

pair being the ones compared and the other pair for context) and then in sets of threes (one

model-data pair being the ones compared and the other two model and data faces for context).

The function, which determines the compatibility among the two (first stage) and three (second

stage) neighbouring data faces, computes the transformations (scale, translation, orientation, and

rotation) which minimize the difference between data and model faces. In the first stage, two

transformations are computed - one for each model-data pair, and in the second stage three such

transformation are required. In the experiments, the 29 'best' surfaces extracted from the data
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arematchedto modelsurfaces.

Tothedegreethattheplanesarecomputedapplyingthemathematicalpropertiesof coplanar

points(thethree-pointseedmethod),thecomputationof theplanesiscontextfree.However,the

a prioriknowledgethatall thesurfacesin the imagesareplanarmakesthis somewhatcontext

sensitive.

The matchingandcomputationof compatibilityis clearlycontextsensitive,beingbased

completelyon themodels.

Bhanualsodescribesa similartwo-dimensionalsystemwhich operateswith linearedge

segmentsinsteadof planarfaces[28].

Boissonnat and Faugeras 1981

Boissonnat and Faugeras [34, 35] describe a triangulation technique to approximate range

data as polyhedra. The approach is graph based where each graph node in the graph is a range

data point. Applying Gaussian curvature the data are segmented into sub-groups of saddle and

cup-shaped points (the method will not work on parabolic surfaces). These sub-groups are then

triangulated applying a graph splitting operation to yield a triangle-facet description of the range

data.

Bolle and Cooper 1984

Bolle and Cooper [36] presented work on the mapping of intensity image data to three-

dimension planar, cylindrical and spherical shapes. The image is partitioned into a grid of

windows into which quadric polynomials are fitted over the intensity values. The relationship

between the three-dimensional shapes in question and the quadric representation of the intensity

surfaces under orthographic projection and pure Lambertian reflectance to a point light source

was investigated. Assuming that each window views a piece of only one surface, or at most two
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surfaces,eachwindowis labelledas'planar','cylindrical','spherical'or 'unknown'byapplying

this relationshipto thequadricsfittedto thewindow. Upontheassumptionthatthenoisein

the intensityimagesobeya zero-meanGaussiandistribution,a Bayesianmodelis appliedto

reparameterizethequadricto yieldasetof threeconstrainedquadricscorrespondingto thethree-

dimensionalforms.By comparingtheunconstrainedquadricfit with theeachof theconstrained

fits in eachwindow,a likelihoodmeasureisobtained.

Thisworkisacontextsensitivefeaturecomputationin thatthetypesof surfacestobelabelled

areknowna priori (otherwisethenumberof constrainedfits wouldbeprohibitive).Whilethe

assumptions(eg.windowsmappingintoonlyonesurface,pureLambertiansurfaces,pointlight

source,Gaussiannoisedistribution,independencefor Bayesianprobability)imposedmakeit

unlikelythatthetechniquewill beapplicableunderreal-worldconditions,theargumentfor the

utility of featuresensitiveintermediatefeaturecomputationsto identifyobjectsis sound.

Bolleset.al. 1984

Boiles et. ai. [39, 97] describe 3DPO which performs three-dimensional part orientation

(hence its name) on range imagery obtained from a plane-of-light triangulation sensor. The

approach, basically a three-dimensional rendition of the local-feature-focus method [38] which

operated on two-dimensional imagery, bases the generation of hypotheses on a small number

of features or feature clusters. 3DPO partitions the recognition process into primitive feature

detection, feature cluster formation, hypothesis generation, hypothesis verification, and parameter

refinement. The primitive features extracted by the system are edge-based. An example of such a

feature is a coplanar sequence of edge points which make up a circular arc of a particular radius.

Object hypotheses are generated by examining all pairwise combinations of these features with

model features. These hypotheses are in turn used to grow the feature clusters (adding a feature

at a time) around the focus feature by applying the information contained in the models.
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Thecontextfree featuresin 3DPOareedgepointswhicharecomputedby applyingtwo

assumptions.Jumpedgesareextractedupontheassumptionthatthereis adiscontinuityin the

light stripeat suchedges.Otheredgesareobtainedby theconventionaltechniqueof finding

zero-crossingsin thefirstderivativeof thefilteredintensityimage.Anothercontextfreefeature

is thelinearedgesegment.

Virtually all otherprocessingin 3DPOis contextsensitive.Specificellipsedetectionis

required,for example,to findcylinders.In fact, this is thebasictenetof 3DPO- thatcontext

informationprovidedby theobjectmodelsbeusedto constrainthesearchandmatching.The

generation of focus feature hypotheses and the building of the object graphs around these focus

features are dependent upon the models of the objects expected, as is the recognition of the object

by graph matching.

ACRONYM - Brooks et.al. 1979-1983

ACRONYM [46, 47, 48, 49, 50, 51] employs a volumetric representation in which all objects

are decomposed into a set of generalized cones. These cones are described by a length, an

orientation, a cross-sectional shape and a sweep rule which determines the variation in the cross-

sectional area (of the same shape) along the length of the cone. This representation scheme is

capable of handling hierarchies of detail by applying combinations of generalized cones (e.g.

conjuncts, intersections etc.) of increasing detail deeper in the hierarchy. Since the perspective

projection of cones yield generalized ribbons, ACRONYM is able to 'predict' the perspective

view of the object on-the-fly.

In the matching process, ACRONYM's low-level processes extract the features to be matched

and organize them as a 'picture graph'. The prediction/planning process generates perspective

projection called the 'observability graph' from the volumetric model stored in the form of

an 'object graph'. The matcher then generates an 'interpretation graph' which determines the
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identityof theobjectbeingviewed.Althoughtherearelinesof controlor data(it is notclear

which)fromtheinterpretationgraphto thelow-levelvisionprocessesin theblockdiagramof

ACRONYMin a 1979paper[46], nosuchcontrolis describedin thator subsequentpapers.

ACRONYMcanthusbeassumedto runopen-loop.Thematchingprocessthusbecomesone

of matchingthepicturegraph(fromsenseddata)to theobservabilitygraph(derivedfromthe

objectmodel).

Theonly contextfreefeaturesin ACRONYMaretheedgepointsusedasboundariesof the

generalizedcones.

Becausegeneralizedconerepresentationisambiguous(manygeneralizedconeconfigurations

maydescribethesameobject),thecomputationof theconesmustbeguidedby themodels.The

graphmatchingactivityisclearlydependenton theobjectmodels.

SeveralthingscanbesaidaboutACRONYM.By theadmissionof the designersof the

system,ACRONYMsuffersfrominadequatelow-levelvision.Thishasbeenblamedfor much

of ACRONYM'sills; but,thisresearcherbelievesthattheproblemismorefundamental.Low-

levelvisionis generallyfragileandextremelysensitivetoenvironmentalandsensingvariations.

Thereis no reasonto believethata low-levelfeatureextractor(edgedetectorsin thecaseof

ACRONYM)will bedevelopedwhichwill solvetheproblem.Themodelrepresentationscheme

whichis a key strengthof thesystemalsoconstitutesoneof its greatestweaknesses.As the

objectsto berepresentedincreasein complexityandnumberthegeneralizedconerepresentation

schemequicklybecomesoverwhelmed.Thisapproachto modelrepresentationmayjustnotbe

richenoughto handleanunconstrainedobjectspace.As aconsequence,ACRONYMis known

to have'understood'onlyoneimagefromoneperspective.

Wehavealreadyseenhowthesystemunderdiscussionabstractsitsvisualdatabyameansof

featureextractionintoapicture graph to be matched with an observability graph. ACRONYM,

thus, quickly distances itself from the visual data. This is perhaps the greatest weakness of the
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system.It doesnotexploittheknowledgecontainedin theimagemodelsto guideits low-level

processes.

Brou 1984

Brou [52] discussed the application of the extended Gaussian image (EGI) to determine

the three-dimensional orientation of objects. The EGI is based upon Minkowski's theorem

which states that the 2-tuples of pointwise Gaussian curvature of a surface and unit surface

normals uniquely describe convex forms. This principle has also been used by Ikeuchi and Horn

[100, 102, 103] to object recognition algorithms based on the EGI. The space of all normals of

a smooth convex form maps into a sphere known as the Gaussian sphere.

Since it is impossible to represent and match the surface normals across the Gaussian sphere

in a continuous fashion, Brou discusses methods to partition this sphere for sampling. The sphere

is approximated by an icosahedron, each triangular face of which is again subdivided into more

triangles which constitute geodesic domes for each icosahedron face. The EGI image is then

smoothed with a Gaussian filter for matching.

This is basically a histograrning approach in the space of surface normals, and is a pointwise

matching scheme. While the computation of the extended Gaussian image is context free, the

matching is dependent on the model. Each model has to be tried until one matches. An oft cited

problem with the approach is that EGI does not preserve spatial connectivity.

Chakravarty and Freeman 1982

Chakravarty and Freeman [56, 77] presented a multi-view modelling approach based on

characteristic views. The space of all possible perspective projections of an object is factored

into a set of characteristic views each of which defines a set of topologically identical projections

related by a linear transformation. This effectively maps the three-dimensional object into a set
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of two-dimensionalmodelsfor matchingpurposes.Experimentsin whichthe silhouetteof a

polyhedralobjectis matchedto its characteristicview edgemodelswaspresented.Finepose

is obtainedwithin thecharacteristicviewby computingthelineartransformationof thelabelled

edgesin thedatato themodeledges.

Thecomputationin whichedgepointsareextractedandgroupedaschain-codeda object

boundaryis dependentonlyuponassumptionsof surfacediscontinuityandconnectivityof edge

pointsformingtheboundary.Thelabelingof thedataedges(matching)andthecomputationof

theperspectivetransformationwithinthecharacteristicviewarecontextsensitive.

Chenet. al. 1980

Chen et. al. [57] describe a system for estimating the pose of a workpiece using the feature

points method. A stereo algorithm is applied to obtain the three-dimensional position of such

features as comers and small holes. The feature point which is accorded the highest confidence

value by the feature extraction process is matched to all model points of the same type. Each

of these possible matches was tested for consistency with other data points in relation to the

object model (the tests applied for such consistency test are Euclidean distance and the presence

of edges linking the feature points). Of those matches which had sufficient support, three points

were selected to obtain a workpiece to model transformation hypothesis. Each hypothesis is

then tested to see if the computed transformation accounts for the other points in the workpiece

feature set.

The context free features are the comers, small holes and edges and their three-dimensional

positions which are computed applying general image processing principles and binocular stereo.

The feature clusters formed with the aid of the models are in essence context dependent higher

level features.
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Coleman and Sampson 1985

Coleman and Sampson [63] presented a mathematical morphology feature-based method for

locating grip points of objects for bin-picking. The algorithm operates on range imagery and

determines with the application of a morphological structuring element locations where the robot

gripper would fit. Only the position and orientation of the grip points are determined. No attempt

is made in recognizing the parts.

The operation is context sensitive in that it look for positions on prespecified objects jumbled

in a bin which 'fit' a particular robot gripper model. The system is thus extremely sensitive to

context. Any change in grippers or objects in the bin will require major changes to the system.

Dhome and Kasvand 1986

Dhome and Kasvand[64] applied a generalized Hough transform method to recognize poly-

hedral objects in range imagery. Pairs of adjacent planar surfaces are used as primitives in the

generalized Hough transform. Each such pair provides a hypothesis comprising the orientation of

the model view axis, the model orientation around the view axis and the model center position.

These parameters form a three layered hierarchy. The Hough spaces of each of these are com-

puted in turn. A clustering program is used to determine the 'winner' of the Hough transform

for every layer.

To the extent that polyhedra are expected in the scene, the extraction of planar surfaces

depends only on the general principle governing their surface normals. This and the detection of

adjacent planes are therefore context free. The generalized Hough transform is strongly dependent

upon the object models. This is thus very context sensitive.
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Douglas 1981

Douglas [65] presented a 'model-building' approach for three-dimensional scene interpreta-

tion. The EYE system integrates depth and semantic information to form a three-dimensional

model of a scene from colour pictures of outdoor scenes.

The preprocessing stage of the system performs a set of image-to-image transforms to yield

a stack of arrays corresponding to colour, averaged images, texture, edges and angles. This

stack, known as the 'recognition cone', is further processed to obtain a set of 'visually similar'

regions. A model of the scene is then built in a four step algorithm. First, a set of label hy-

potheses is assigned to the regions; second, depth cues (shading) are used to estimate the regions

three-dimensional structure; third, the initial depth estimates are corrected by an iterative relax-

ation process; and fourth, the region labels are finalized to constitute consistent objects. These

operations are performed by three routines which operate within a blackboard representation of

the scene. The placement procedure performs the first two operations; the adjustment routine

performs the third; and, the object formation routine does the fourth.

The placement routine uses two kinds of information to estimate the depth of a region.

The cues employed are: occlusion, expected size of the object, ground plane hypothesis (grass

patches are expected on the ground plane), texture gradients, shadows and highlights and linear

perspectives. Context free (e.g. occlusion, texture gradients) and context sensitive (e.g. object

size, ground plane hypothesis) cues are thus applied at the same time. The adjustment routine

relaxes the labels of the regions and their depth estimates by introducing relational information

among the regions. The object formation procedure matches clusters of regions to object models

which take the form of associative nets. These nets comprise PART-OF and ISA links.
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Engelbrecht and Friedrich 1988

Engelbrecht and Friedrich [68] describe a Hough transform-based method for recognition

of polyhedral objects in three-dimensional space. The standard Hough transform is applied to

edge points detected in the intensity image to obtain the set of straight lines. The Hough space

is further analyzed to determine such higher level features as parallel lines (vertically aligned

cluster points in Hough space), n-line intersections at a vertex (colinear clusters in Hough space),

two vertices linked by one line (two point colinearities sharing one cluster point), and n-colinear

vertices (n cluster point colinearities sharing one cluster point). These lines are organized into an

attributed graph (nodes are vertices, arcs attributed by length, slope etc.) and matched to model

graphs. To avoid explosive combinatorics, the attributes of the arcs are used as a key to detect

isomorphic sub-graphs.

The only experiments reported were on synthetic imagery.

Ettinger 1987

Ettinger [71, 72] presented the SAPPHIRE system which performs hierarchical object recog-

nition using libraries of parameterized model sub-parts. The two-dimensional recognition system

operates in the domain of object boundaries extracted by means of an edge detector (Canny's

edge detector). Objects are modeled both in terms of a sub-part and scale hierarchy. Both

of these are facilitated by the application of features derived from Asada and Brady's Curva-

ture Primal Sketch [7]. These features, derived by observing the results of convolutions of the

first and second derivatives of the Gaussian filter at various scales on the region boundary, are

'smooth joint, comer, crank, bump, end and dent.' Such features are inherently multi-scale and

SAPPHIRE records the largest scale at which each feature appears to derive a scale hierarchy.

The sub-part segmentation is obtained by a set of rules which governs points on the boundary at

which to make breaks. An example of such a rule is that 'two crank features, close to each other,
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facingoppositedirectionswith oneor moreotherfeatureson theboundaryseparatingthemis

agoodplaceto makeabreak'- thisdeterminesaconstrictionpointwheretwoportionsof the

sameboundarycomeclosetogether.

Duringrecognition,anindexingstepis firstperformedusingavariantof theHoughtransform

to obtaina setof probableinterpretations.Thetransformcountsthe 'votes' for eachtypeof

featurein thescenetohypothesizesub-parts.Next,amodel-constrainedinterpretationtreesearch

is appliedin whicheachprobablemodelis testedtoseeif itsnodescanbepopulatedbydetected

featutgsataconsistentposeandscale.

Thecontextfreefeaturesusedin thesystemaretheedgepointsandthecurvatureprimal

sketchfeatures.Thesub-partsegmentationandmatchingaredependentonthemodelsetandis

thuscontextsensitive.

Fan et. al. 1989

Fan et. al [74, 73] describe a graph-based object recognition system which operates with

dense range data. The nodes of the graph represent the surfaces in the image and the arcs

detail the inter-node relations. Objects models are stored in multi-view format (a model for each

view). The problem is posed as one of decomposing the graph representing the scene into a set

of subgraphs which correspond to different objects in the scene.

The scene is segmented into surfaces by first detecting the boundaries which separate them.

These boundaries are characterized as jump boundaries, limbs and creases. The computation of

the boundaries is curvature-based. The entire scene is treated as a single sheet and the local

surface curvatures are computed across the entire scene. Discontinuities in range readings which.

correspond to zero-crossings in surface curvature are labelled as jump boundaries. Discontinuities

in surface orientation which correspond to extrema in surface curvature are labelled as creases.

Jump boundaries at which the surface normals of one of the surfaces gradually become perpen-
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dicularto theviewingdirection(e.g.atthesideof acylinder)arelabelledaslimbs. Creases are

further labelled as convex or concave creases depending on whe_er they are maxima or minima

of surface curvature. Quadric patches are fitted to the regions formed by the boundaries. A graph

structure is generated in which the nodes correspond to the surface patches and the arcs represent

the common boundaries among the nodes. These adjacency relationships are the first cue as to

whether surfaces belong to the same object. Surfaces separated by convex creases and concave

creases are assigned the probability of 1.0 and 0.75 respectively that they belong to the same

object. Jump boundary and limb separated nodes are assigned same-object probabilities of 0 to

0.5 depending on the distance of the jump between the surfaces. The nodes are further attributed

by their surface area, orientation (surface normal for planes, axis for cylinders and direction of

least curvature for all other surfaces), average of principal curvatures, estimated occlusion ratio

(a measure dependent on the boundary type and length of shared boundary), centroid, type of

adjacency (what kind of boundary lies between nodes) and the probability that adjacent nodes

belong to the same object.

The matching takes place in three steps. First a screener selects an ordered list of object

model candidates using a set of heuristics. The heuristics are that the ratio of visible area of

largest node (surface), number of planar nodes and the number of surfaces in the image graph to

the model graph must exceed some threshold. Second, a graph matcher which attempts to detect

sub-graph isomorphism between the image graph and the object graphs applying the following

steps:

1. Pair-wise compatibility: All possible pairings between scene and model nodes are tested

for compatibility. The measure of compatibility is based upon the attributes of the nodes

described earlier.

2. Sets of 4 scene-model node pairs are grouped applying such constraints as the difference

in patch orientations, distances between centroids, consistency of the types of the dividing
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boundariesetc.

3. Thebestfour-pairsetarechosenfor expansionto obtainthecompletematchbetweenthe

scenegraphandmodelgraph.

4. Theactualtwo-dimensionalgeometrictransform(in theviewingplane)is computedto

registerthemodelwith thesurfacesin thescene.

5. A goodnessof matchiscomputedto determinetheviabilityof amatchandto determine

if alternatemodelcandidatesoughtto betried.

Third,ananalyzer is employed to prune the graph. This is a heuristic driven process which

splits the scene graph into object sub-graphs and merges originally disconnected nodes (nodes

for which the probability of their belonging to the same object was originally zero).

The computation of the boundaries and the original segmentation into regions are context

free since they are dependent upon general mathematical assumptions. The computation of

the quadric surfaces is dependent on the assumption that all regions within a boundary can be

approximated by quadric surfaces and that the boundaries exist. The computation of most of the

attributes of each node (area, centroid, principal curvatures etc.) is also dependent upon the same

assumptions. All graph manipulation processes are context sensitive, depending on the contents

of the scene and the models.

Jain and Hoffman 1988

Jain and Hoffman [106] describe a three stage three-dimensional object recognition system

for range images.

At the lowest level, the range images are segmented to yield morphological, surface patch

and boundary information. Morphological information characterizes the entire image in terms of

background/nonbackground pixels, connected components of background pixels, and the 'number
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of backgroundcomponentswithin theconvexhull formedon thesetof nonbackgroundpixels'.

Surfacepatches,computedby clusteringsurfacenormals,ateclassifiedasplanar,convexor

concaveusing 'the eigenvaluesof thecovariancematrixcomputedon the patchpixeis,the

variationof unit surfacenormalsover the patchandoutcomesof applyinga nonparametric

statisticaltrendtestto thepatch.'Boundaryinformationdetailstherelationshipsbetweenpairs

of patcheswhichincludetheclassificationof theboundaryedges(creaseor jump edges).This

constitutestheinitial representation which is oversegmented.

At the next level, the oversegmented surface patches are merged by applying object-specific

likelihood metrics which determine if adjacent patches should be merged. An attempt is made

to coerce the patches to conform to the description for each object within some bounds. An

alternate representation (or interpretation of the surfaces) is thus generated for each object in the

domain. This is are called the modified representations.

Finally, an evidence-based recognition procedure is applied. The rule-based system comprises

a set of evidence conditions which support particular object models. Each rule comprises a set

features involved in the rule, bounds for the numeric values for each feature, the minimum and

maximum number of occurrences of that feature and a set of evidence weights (one weight

for each object - 1.0, 0.5, 0.0, -0.5, -1.0 for 'strongly supports, tends to support, gives no

information, tends to refute and strongly refutes' respectively) which specifies the amount of

support the satisfaction of that evidence condition gives each object. These rules generate a set

of similarity measures relating each alternate scene representation (one for each object) to the

object. A further constraint is laid on the recognition process by requiring that a major evidence

condition for an object must be satisfied as a necessary condition for the recognition of that

object.

In the first stage of the system, the computation of the initial representation is context free.

All subsequent computation, including the generation of the modified representations in the
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secondsteparecontextsensitive.Thissystemdoesnotprovideposeinformationalthoughthe

authorssuggestthatsuchdeterminationupto thegrossorientationof themultiviewmodelsmay

beobtainedby taggingeachmodelwith thisorientationinformation.Sincethesystemmakes

useof a featurevector-likediscriminator,theexplicitcorrespondenceof thefeaturesto model

featuresarenoteasilyaccessible.

2.3.2 Comments

In the midst of all the diversity among the systems reviewed, the general theme of the

feature-model paradigm prevails. Each has a general purpose (or context-free in our parlance)

feature detector or image segmenter, followed by a process of manipulating these features either

as graphs or as numeric feature vectors. This process is dependent on the objects expected and

the scene contents. The latter process may often be construed to be a course of interpreting the

features in terms of scene contents and expectations. The idea of applying increasing context

information to refine the detected features does not arise except for the work of [106]. In that

work, the refinement is performed via a 'shotgun approach' in which an attempt is made to refine

the feature representation for each object model in the domain.

In the final analysis, though, it should be realized that even in the early processing, domain

knowledge has been already implicitly incorporated. The determination of the feature set, the

inevitable magic number parameters and thresholds, and even the selection of the sensing modality

are dependent on the domain or context. The cost of not making the context-based assumptions

explicit is the fragility of computer vision systems to modifications in the domain, sensor and

scene and the failure to exploit context information in the detection of features. One should not

attempt so much to build a general purpose system with no magic numbers and domain-specific

hacks as to endeavour to make intelligent decisions for the choice of such numbers and hacks

(and to know when these have been employed).



CHAPTER III

THE UNDERLYING STRATEGY

Objects to be recognized in the industrial environment are usually a composite of different

structures. This is especially true of machine parts and objects designed on computer-aided

design systems. It is therefore reasonable to attempt to recognize and determine the orientations

of these constructed structural components. The fundamental structures which make up most

parts or which are at least present in a predominant majority of parts are planes, cylinders, cones

and spheres. In the course of this work, planes and cylinders have been chosen as a representative

sub-set (they are by far the most common).

This chapter provides an extended outline of the research described in the rest of this thesis.

Lest the wood of purpose be missed for the trees of methods, mathematics and detail, we shall

lay a 'bread crumb trail' of reason behind the computations performed at each stage of the

processing.

3.1 Exploiting the Data

In working with laser range data, it is prudent to exploit the strengths of the technology and

data. Such data are rich in information on smooth surfaces and are poor at discontinuities. The

reasons for this are:

• There are far more data points (samples) on continuous surfaces than at surface disconti-

nuities.

48
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Figure 3.1: Laser range reading inaccuracies at surface discontinuities owing to scatter.
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Figure 3.2: Laser range reading inaccuracies at surface discontinuities owing to range averaging

over the laser spot-size
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• On smooth surfaces the point range readings are supported by those of neighbouring points

when some continuous surface function is fitted to the points.

• The active laser manning beam scatters at points of rapid surface discontinuity (sharp

edges) (see Figure 3.1.) This leads to inaccuracies at such edges.

• Since scanning lasers are not perfectly coherent, the spot-size of the laser on the object

surface varies with range (See Figure 3.2). As the spot gets larger, the reading become

inaccurate. This reasons for this are:

- To reduce reading errors, scanners often take the average of multiple readings at

each location (In the scanner used for this work two readings are added and the least

significant bit is dropped). On smooth surfaces, such averaging makes sense, but at

edge discontinuities (especially at jump edges), this averaging leads to meaningless

range readings.

- Most laser range scanners make use of a sensing mechanism which detects phase

shift of an amplitude modulated laser beam reflected from a target surface. At jump

edges, two return signals of the same frequency at differing phase shifts are seen by

the scanner. These signals may interfere with each other at the phase detector.

- Owing to the rapid reading changes at jump edges, the sensor electronics (operational

amplifiers etc.) may not be able to respond quickly enough.

For laser range data, therefore, it is advantageous to operate on data taken from contiguous

surfaces. Points of discontinuity in the image or edges may be useful for determining the

boundaries of these surfaces; but, the range readings to these edges should not be used for the

pose determination.
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3.2 Extraction of Structure from Scenes

To determine whether a collection of points subtend (and are due to) a particular physical

constructed geometric form of the surface of the target object, the form could be fitted to the

data. This would yield a validation of the hypothesis (by examining the goodness offit or fitting

error) and the position of the structure in space (by observing the parameters of the fit). As

will be discussed later, for linear surfaces such as planes (where the coefficients determining

the relation of the depth z reading to the z and y terms are linear), such fitting is simple.

Linear parameter estimation methods like QR minimization, normal equations and Singular Value

Decomposition can be applied directly to the data. For structures like cylinders and cones,

however, the surface functions are non-linear with respect to their orienting parameters. Fitting

techniques for non-linear parameter estimation like the Levenberg-Marquardt method require

relatively accurate estimates of the parameters; otherwise, the parameters will not converge or

they may converge to local maxima in the parameter space. Furthermore, the set of possible

structures to fit can be arbitrarily large, the possible regions to attempt the fits are virtually

infinite, and the method of fit depends on the structure being fitted. Clearly evidence sufficient

to make structural decomposition hypotheses and parameter estimates are needed. Within the

paradigm of successive refinement/abstraction laid out previously, such structural features are

context sensitive.

3.2.1 Smooth Contiguous Regions

Before attempting the fitting of constructed geometric forms therefore, one needs to form a

hypothesis of the structures present and the regions they occupy in the sensed scene. It is clear

that such an enterprise has to be general and must apply abstracting assumptions based solely

upon physics, the sensing methodology and/or mathematics.

The first assumption applied to the range data is that contiguous smooth surfaces can be
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approximatedby high-orderpolynomials.Thiswasshownby BeslandJain[25,26]. Applying

thealgorithmsandprogrammesdescribedin [22]onecanobtainfairly robustsegmentationsof

a laser-rangeimageintosmooththree-dimensionalpatches.Suchanoperationisclearlycontext

independent(doesnotdependoncontentsof thescene).Thiswill bediscussedin greaterdetail

later.

Whilehighorderpolynomialsurfacesareexcellentfor theidentificationof smoothsurfaces

andforsurfacereconstruction,thecoefficientsof thepolynomialscarrylittle semanticcontentfor

surfacerecognition.Theyarestill justanimpregnablecollectionof numbers.Furtherprocessing

isneededto extractsemanticcontentotherthansurfacecontiguityfromthedata.

3.2.2 Surface Curvature-Based Labelling

Surface curvature computations provide a method for assigning semantic interpretation to

regions in the scene. By examining the signs of the Gaussian and mean curvature one can de-

termine if surface regions are planes, ridges, valleys, peaks, saddles etc. We shall call images in

which surfaces have been labelled this way curvature sign maps. Since such symbolic labelling

is perspective independent, it is well suited for manipulation by high-level vision interpretation

processes. There is, however, a serious impediment to the computation of such features from

the image data using digital image differentiation techniques. Digital quantization noise makes

reliable computation of such features virtually impossible because the surface derivatives com-

puted by such digital differentiation techniques are inaccurate [25]. In the work of this thesis,

these features are computed analytically from the close-form polynomial descriptions generated

by the high-order polynomial fits. This yields much better results because these surfaces describe

quite accurately the surface subtended by the data points and provide an implicit interpolation

between the digitally sampled points. The high-order polynomial surface description also per-

forms noise suppression in that it smooths the surface (in accordance to the surface contiguity
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assumption)andrejectshighfrequencynoisyimageregions.In this process, the abstracting as-

sumption applied is the nature of surfaces defined by differential geometry. It provides a higher

level of abstraction than the high-order polynomial fitting and is more context dependent in that

it assumes that the correctness of the segmentation of the high-order polynomial patches. The

mathematics and processing of these surface curvature features will be discussed in greater detail

later.

Curvature sign maps offer semantic perspective independent description of the various con-

tiguous surfaces in a range data scene and provide a coarse two-dimensional viewer-centered

symbolic description of the scene which is useful for matching to view-centered models. Herein

lies the weakness of such curvature maps. The features describe the surfaces only in terms of

type and not in degree. A larger cylindrical pipe further away would be labelled exactly as a

smaller cylindrical pipe. Both sections of cones and cylinders appear as ridges and there is no

way of telling the directions of maximal or constant curvature. It would be impossible, in a

curvature sign map, for example, to determine where two lengths of straight piping joined at

an obtuse angle should be separated, or when a conduit of circular cross section ceases being a

cylinder and tapers into a cone. These limitations also render features derived from curvature

sign maps incapable of three-dimensional pose determination (except at the coarseness of the

viewer-centered models). Curvature sign maps coupled with view-centered models of the object

set to be recognized and located do provide adequate evidence to hypothesize the constructed

geometric forms which give rise to the surfaces detected in the scene.

3.3 Linear Form Estimation

We are still, however, not ready to fit the constructed geometric forms to the range data

because such fitting requires three-dimensional parameter estimates (a cylinder appears as a ridge

region in curvature sign maps irrespective of the angle its axis makes with view-plane). Here, we

introduce the notion of segmentation and parameter estimation by the application of companion
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Figure 3.3: Fitting of minimal order functions is more appropriate for parameter estimation al-

though higher order fits may yield lower fit errors.

linear forms to the non-linear form to describe constructed surfaces. Pending formal definition of

such forms in the next chapter, companion-linear forms are linear parametric functions which will

fit to data arising from the presence of non-linear surfaces (e.g. cylinders and cones which are

non-linear with respect to their orientation and scale parameters) and which contain information

necessary to estimate the pose of the non-linear surface.

Since the purpose of fitting companion linear forms to the data is to estimate the parameters

of the underlying constructed structure, a ground rule is that the minimal order surface function

should be used. Taking the two dimensional analogy (see figure 3.3), a quadratic equation can

often fit a noisy straight line better than a straight line fit, but the straight line fit is more powerful

for parameter estimation; and a cubic function may yield a fit of lower error to a convex surface

than would a quadratic, but the quadratic fit results in less ambiguity in the shape matched (one

never knows which bend in the higher order function fitted the data). In the case of planar

surfaces the depth (z) value of the image is a linear combination of the x and y terms. The

companion linear form for such surfaces is therefore trivially defined as planes, For cones and

cylinders, however, the relation of z to x and y is far from linear in the orienting parameters
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(aswill beshownlater).In thecourseof thisdissertation,biquadraticsurfaceshavebeenfound

to beanexcellentintermediateor companionform for cylindersandcones.A studyof the

propertiesof biquadraticsurfaceswill showthatthecoefficientsderivedby fittingthesesurfaces

to cylindersandconesyield accurateapproximationsof theparametersof orientationof the

originalconstructedformsin space.It shouldbe notedthatsuchcompanionlinearformsare

fittedto the range data only when a hypothesis of the existence of the constructed forms are

present in the scene. These hypotheses are derived from the curvature sign maps and object

models. The process of fitting companion linear forms is therefore very context sensitive.

Once the companion linear forms have been fitted and the parameters of the original con-

structed forms have been estimated, non-linear fitting can be performed to obtain more accurate

estimates.

3.4 Overview of the Sequence of Abstraction

Figure 3.4 shows the sequence of abstraction implemented in this thesis along with the

processes which traverse the hierarchy.

The processing begins with the transformation of the laser range imagery from the native

coordinate system of the laser scanner to real world Cartesian coordinates.

There are two distinct stages in the processing sequence beside the data coordinate trans-

formation. First, there are the context free processing stages which does not rely on knowledge

about what is actually in the scene. These are the segmentation to polynomial surfaces and

curvature analysis. The subsequent processing makes use of more and more information about

the scene and its contents.

It should be noticed that the coordinate-transformed data are used throughout the system. At

each stage, the abstracting mechanism makes hypotheses about the interpretation of the unwarped

three-dimensional data. Thus, the system remains data-bound as it makes stronger and stronger

statements about the way the data ought to be organized.
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More will be said about this diagram at the conclusion of this thesis after all the labelled

processes have been discussed.



CHAPTER IV

MATHEMATICAL AND ALGORITHMIC BASES

In this chapter, we shall discuss the mathematics and algorithms employed in the work of

this thesis. In each section, both the primary mathematics and extensions applied to this work

are detailed. The chapter is divided into four sections. In the first section, both linear and

non-linear coefficient or parameter estimation will be reviewed. In the second section, Besi and

Jain's variable order segmentation algorithm for extracting contiguous surfaces from an image as

polynomial patches is discussed. In the third section, surface curvature computation is reviewed

and a method for computing curvature-based features reliably is advanced. In the fourth section,

the properties of the bi-quadratic function and how they may be applied to cylinder estimation

are discussed.

Effort has been made to discuss the mathematics and algorithms as they relate to this work

and computer vision in general and not in the abstract.

4.1 Review of Coefficient/Parameter Estimation

Since coefficient/parameter estimation underlies all of the work here discussed, we shall

begin with an overview of the principles, assumptions and techniques of linear and non-linear

parameter estimation.

Fitting, in general, is the modeling of data with some overarching mathematical description.

This is done by assigning to the fitting mathematical description or function an appropriate set of

58
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parameters.In thiswork,asurfacedescriptionisdesiredfor a setof rangemeasurementswhich

yield threedimensionalpoints:

(xi, y_, z,) (0 < i < N)

where N is the number of measurements taken.

Fitting can then be defined as follows:

Given a fitting function

y) = y;

where M is the number of adjustable parameters of f, compute a set of values for

[A] = (al ... aM) such that some likelihood criterion is maximized.

Two constraihts need to be satisfied for this operation to make sense. First, the data must be

describable by a bivariate function and second, the fitting function must be capable of describing

the data.

For a set of data to be describable by a bivariate function f(z, y) on an orthogonal x-y basis,

the coordinate patch Ck on that space must be one-to-one (i.e. there must be only one zi value

for each pair of zi and Yi).

4.1.1 The Data

For a Ck coordinate patch to be one-to-one, a function x : _R -, R 3 describing Ck for some

k >_ 1, where R is an open subset of R 2 with coodinates u 1 and u 2 and _ x _ _ 0 on _R

[131].

A subset R of R 2 is open if for every point P E R there is an Euclidean e-neighbourhood

around P E R.[131]. In other words, for any point on the surface, there is a disk around the

point which is completely contained in the surface.
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Theconstraint,therefore,on thedatais thatthesurfacebecontinuousandhavenon-zero

firstpartialderivatives(otherwise,thesurfaceis no longera functionon x-y since at points of

zero first partial derivatives, the surface will experience a one-to-many mapping of z, y onto z).

Such surfaces or patches are called Monge patches.

Laser range data are constrained by the sensing physics to be a one-to-one mapping between

the array indices and range readings (i.e. each location in the sensed image can have one and

only one range value). The problem occurs in such images at edge and occlusion discontinuities

where the first derivative approaches infinity. If step edge changes occur in a region being fitted,

the fit would be poor and the disparity between the data and the fitted surface would be large.

If, however, the entire range image is first segmented to obtain separate smooth regions, each of

these regions would be a Monge patch.

4.1.2 The Fitting Function

A fitting function must be capable of describing the surface for a reasonable fit to take place.

For example, if the planar function z = a + bz + cy were to be fitted over a large portion of

data representing a cylindrical surface, the fit would invariable be subject to large fitting errors

because there is no combination of parameter values (a, b, c) which can bend the function into

the required surface.

In general, there are two kinds of surface functions which can be fitted to the data. First, the

function may describe precisely the form of the data being fitted. Fitting a function describing

a cylinder to data of a sensed cylinder, a spherical function to data describing a sphere or a

planar surface function to data of a planar surface fall into this first category. Second, a general

function may be used to fit the data. The purpose of such fitting is often to represent the surface

for reconstruction and display. The bivariate polynomial surface function is an example of such

a function. For any arbitrarily complex surface (many smooth bends), an arbitrarily high-ordered
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polynomialcanbeselectedto fit thesurface.

Unfortunately,for mostinterestingstructuralformslikecylindersandcones,theconstructing

functionsarenon-linearin termsof their orientingparameters.This posesa problemsince

it is moreconvenientto fit linearfunctions.As will beexplainedlatermanyproblemsare

attendantto non-linearfitting.Unlesstheoriginalsurfacewerelinear(aswithplanes),therefore,

approximating functions are generally used for such fitting.

4.1.3 Fitting as a Minimization Process

The task of fitting a function to a set of data points may be framed as one of maximizing

some goodness-of-fit metric if a closed-form descript!on of such a metric exists. The maximizing

of this metric would constitute the minimizing of fitting errors.

The fitting of a bivariate function

Z(X,y) = f(x, y;al.., aM)

(M being the number of adjustable parameters of f) to a set of data

ziE Z I 1 < i< N

(4.1)

where N is the number of sample points may be stated as follows:

N

maximize over 31... aM : __, G(zi, zi, Vi) (4.2)
i=1

(where G is the goodness-of-fit metric of f(zi, l/i) to zi).

If we assume that the sampling and quantization errors in the data are independently and

normally distributed with a standard deviation ai and zero mean, the probability of error at each

point is the Gaussian probability:

_.t ( z_-l_,._,))2
Pi = Az e a ", (4.3)

where Az is the mean interval between z readings.
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Owingto theindependenceassumptiontheprobabilityof thedatasetis theproductof the

probabilitiesof thepoints:

P= I_ Aze 2 ,,, (4.4)
i=l

The maximization of equation 4.4 may be obtained by minimizing the logarithm of its recip-

rocal:

[_=l(zi-f(xi'Yi))2"-NlogAz2ai2 (4.5)

Since Nand Az are constants, if the standard deviation ai is also constant for all i, this is

equivalent to minimizing

(zi - f(zi, yi)) 2 (4.6)

This is the familiar least-squares fitting criterion.

If, however, the standard deviation ai varies across the range image, the minimization of

equation 4.4 is equivalent to reducing the ,_2 function given by:

4.1.4 Review of Linear Coefficient/Parameter Estimation

The linear function to be fit to the data may be written:

(4.7')

M

z(x,u) =  kx (x,v) (4.s)
k----I

where Xx(z, y),X2(z, V)," "" XM(Z, y) are the basis functions

al , a2, " • aM are the function parameters

or

z = a. X (4.9)
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Equation4.7thenbecomes:

X2= Z

i=1

(4.1o)

For convenience in the ensuing discussion, we define two matrices A and b such that

Aij -

zi
bl -- _

A is known as the design matrix.

Solution by Normal Equations

The X 2 expression of equation 4.10 is at its minimum value when its first derivatives with

respect to all a_, a2,.., aM are zero. The minimization of ,<2 thus becomes the solution of:

_"_.'_"fi;2 z{- _-'_ajXj(xi,y, ) Xk(xi,yi) k = 1,2,...M (4.11)
i=1 * j=l

Let

This yields:

i=l (7i2 j=l [i----_ .]O'i2 " " "

akj = _ (4.13)
o.i 2

i=1

N

/3j = E yiX_(zi, yi) (4.14)
i=1 0"i2

By inspection, [a] = A T • A and [/3] = AT • b. Equation 4.12 can now be rewritten as:

M

ff_akjaj = 3_ k = 1,2,...M (4.15).
j=l

or in matrix notation:

a = [/3]

A T •A • a = A T •b (4.16)
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Possible Configurations in which
the same plane may nesl in different

bicubic fits.

Figure 4.1: Multiple portions of a bicubic surface may fit the same plane.

Equation 4.12 and equation 4.15 are known as normal equations. The solution of these

equations for a will yield the X2 minimized result. Such minimization may be accomplished by

the standard linear algebra techniques of LU-decomposition with backsubstitution or by Gauss-

Jordan elimination or by QR minimization of the design matrix. As discussed in [140], the latter

method is preferable because direct solution of the normal equations by the first two methods is

susceptible to round off errors.

Solution by Singular Value Decomposition

A serious problem dogs the normal equations methods of X _ minimization. When the normal

equations are singular or close to singular, the technique will fall. Should the equations be

singular, one of the pivots in the solution matrix becomes zero and all the linear equation



65

solutionalgorithmsmentionedpreviouslywill fail. Whenoneof thepivotsbecomesverysmall,

thetypicalresultis thaithelinearsolutionbecomesunstable,yieldingverylargeparameterswhich

canceleachotheroutwhentheresultingfunctionis evaluated.Whilesucha singularsolution

is notnormallyexpectedin grosslyoverdetermined(muchmoredatathanunknownvariables)

fittingproblems,theycanoccurin surfacefittingwhenmorethanonesetof parameterscanfit

thedata. For example,if a bicubicsurfacefunctionwerefittedto smallpatchof datawhich

representsa plane,it couldoccurthat multiplecombinationsof coefficientswill fit thedata.

Sincebicubicsurfacesarecapableof producing'S-shaped'sections,onecanseeintuitivelythat

therearemultipleportionsof the'S' whichmightfit thedata(seefigure4.1). Thisresultsinan

ambiguityin thesolution.Forthis reason,singularvaluedecomposition(SVD)[140,81, 155]

wasthealgorithmof choicein thework reportedhere.

Theminimizationof theX 2 expression in equation 4.10 can be rewritten as to the minimization

of

,2 = IA . a - bl 2 (4.17)

In traditional linear algebra, it has been shown [140, 81, 155] that any M x ,V matrix A can

be decomposed as follows:

A = U.w. V T (4.18)

where U and V are orthogonal matrices (i.e. U • U T = I and V • V T = I, I being the identity

matrix). U is an M × N matrix and the dimension of V is N × N. The matrix w is an N × N

diagonal matrix with non negative diagonal elements.

Since U and V are orthogonal, U -1 = U T and V -1 = V T. If M = N, it follows then that

the inverse of A is given by:

A-: = V. [diag,]. U T (4.19)

At this point, the algorithm applies a very important relaxation. The chief question to be

answered is whether b lies in the range of A..If it does, a solution exists for a. Whiie it seems
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counter-intuitive,Golubet. al. [81]showedthatthesolutionisattainablebysimplyreplacingall

occurrencesof ..l_withzeroin thenewdiagonalmatrixwheneverwii in w is zero. The reason
ff.Jil

for this is that within the null space, any corresponding column of V can be added to a in any

combination. The SVD solution then becomes:

a = v. w. (U. b) (4.20)

where w is the modified [diag,,.].

'V •w. U' is known as the pseudoinverse of A and Golub et. al. showed that this solution

works for overspecified systems where (N > M) as well.

The algorithm used in this work is a modified form of the routines due to the Numerical

Recipes Library by Press et. al[140]. In the experimentations, it was found that the E threshold

of wii at which to set the inverse to zero is critical in the fitting. For single precision, the value

given in the library is 10-s and this seems to work well. At double precision, this threshold

should be 10 -6 to 10-12 . Within the range of acceptable values for the double precision fit,

there is little deviance in the result, but there seems to be a threshold (approximately 10-s) at

which the fit becomes unstable.

4.1.5 Review of Non-Linear Coefficient/Parameter Estimation

Non-linear parameter estimation involves the fitting of a set of data to a function which varies

nonlinearly with respect to the parameters being estimated.

Consider the X 2 function x2(a), where a is a multivariate coordinate system in M dimensions

(M being the number of parameters being estimated). By Maclaurin series, this is:

,',t 0_2 1 M M G92X 2

x2(a) = x2(a°) + _ O_i (a°)a/+ 7 L-_ cga,Oaj(a°)aiaj + "'"
i----1 i=lj=l

1

7-d.a+_a.D.a (4.21)
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where aois theoriginof thecoordinatesystema

7 = _2(ao)

d is the dimension 3/gradient vector: d = -Vx2(a)

2 2
D is the M x M Hessian matrix: D 0 - °--_ta^_

OaiOaj _ u/

Therefore, the gradient of the X 2 function may be approximated by:

VX 2 = D • a - d

Hence, the extremum of the X 2 function occurs when

(4.22)

D. a,,_n = d (4.23)

and, at some approximation point aapt,rox,

D .aapp,o_ = _Tx_(aapp_ox) + d

By subtracting equation 4.24 from equation 4.23 and algebraic manipulation, we have:

D- (a,,_ - aapp,ox) = - V x _(aapp,ox )

(4.24)

(4.2s)

or

a,,a,, = a,,m,,o_ + D -1 • [-_Tx2(a,,pt,,o:_)] (4.26)

Thus, it is possible to jump directly from some approximation point to the X 2 minimum point if

equation 4.21 is a good approximation and the inverse of the Hessian matrix is known.

From section 4.1.3, we have the expression for ,_2 (equation 4.7) as:

N ( a))2x2(a ) = _ zi- f(zi,yi;
i= I O'i

where N is the number of points (zi, Yi, Zi) in the data set. The gradient Vf is thus:

0__._..__ = _2S _, zi - f(z,, y_;a)Of(zi,u_;a) #. = 1,2,...,M (4.27)

Oak _i=1 cri2 Oak

where M is the number of parameters being estimated.
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Theelementsof theHessianmatrixDkl are given by:

02_C.._._._2 N 1 [Of(zi,vi;a)Of(zi,yi;a) _ [z, - f(zi,yi;a)]
OakOat = 2 i=IE o-i"'_ L Oak Oal

Equation 4.25 may thus be written as the set of linear equations:

M

akt&l = flk k = 1,2,...,M
/=1

where

1 cgX2 1 02X 2
fl _ and a =_

2 Oak 20akOat

c92f(zi'Y';a)]oakOal (4.28)

(4.29)

[a] is usually called the curvature matrix in the literature.

For each set of parameter approximations a_pp,ox, equations 4.29 may be solved for the

increments fit to be added to aapprox to obtain a better approximation.

Should the iterative solution of equations 4.29 not converge, an alternative solution is the

steepest descent method which adds a small constant fraction of the the local downhill gradient

(4.30)

(negation of the gradient vector):

a,_._ = a¢_,,,,,_ - constant x _'x2(acurrent )

or

&tt=constant×fl_, k = 1,2,...,M (4.31)

The Levenberg Marquardt method applies both the Hessian matrix solution of equation 4.29

and the steepest descent solution of equation 4.31 for non-linear parameter estimation. The

steepest descent method operates when the approximation is far from the solution and the Hessian

matrix method is activated when the approximation is close to the solution. The Levenberg-

Marquardt algorithm in [140] is used in this work.

4.2 Contiguity-based Segmentation

At this juncture, it isfitting that we discuss the variable-order segmentation work of Besl and

Jain[22, 25, 26]. The variable-order algorithm and programs were used in this work to perform
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theinitial segmentationof the range imagery.

4.2.1 The Algorithm

The variable-order segmentation strategy is based on the idea of spatial coherence or surface

coherence. The basic idea is that surfaces that are contiguous (i.e. no step jumps or discon-

tinuities) can be approximated by bivariate polynomials. If a sensed scene is made up of a

set of such piecewise smooth patches, then an appropriate segmentation scheme should yield a

corresponding set of polynomial surfaces. The Besl-Jain algorithm does this in a region growing

and surface-order varying process.

In overview, the algorithm proceeds as follows:

1. Select a set of small seed regions Es_d at which there is a high degree of confidence that

they are portions of contiguous surfaces.

2. Rank these seed regions by order of confidence

3. For each region r i in Es_,,/, do the following:

(a) Fit a polynomial surface function S, (where i the polynomial order is initially 1 and

Si is planar).

(b) If the goodness-of-fit threshold is not exceeded for the Si fit, grow the region and

perform the S_ fit again.

(c) If the goodness-of-fit threshold is exceeded, increment i (i.e. Si progresses from

planar to biquadratic to bicubic to biquartic).

(d) If i is greater than a set order limit (e.g. i > 4 or Si is greater than biquartic), proceed

to the next seed region (i.e. go to step 3g)

(e) If there has been no improvement in the goodness-of-fit for two successive surface

orders, go to step 3g.
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(f) Goto step3a.

(g) If thegoodness-of-fit of resulting grown region is within the acceptance threshold,

the region is collected into the set of grown surfaces and remove from _se_a those

seed regions which are in the grown region.

Besl/Jain used surfaces computed from differential geometry concepts to obtain the surfaces

in step 1. Using these surface regions as the initial segmentation hypothesis, the regions were

shrunk to obtain seed regions. The rationale for this was that while the initial segmentation was

rather inaccurate, there is good confidence that there is some kernel of truth in the segmentation

- especially in the middle of the segmented regions.

The increasing orders of surface functions being fit could be construed as a partial order in

surface space where a surface of order i will always yield a better or equal goodness-of-fit to a

coorch'nate patch r than a surface of k if i > k. If two successive orders i and i + 1 yield the

same goodness-of-fit, then the all fits of order k > i will yield the same goodness-of-fit. This is

Obviously true for increasing orders of polynomials in fitting of data in two dimensions z and y.

By extension, it is also true for bivariate polynomial functions fitting three dimensional data.

4.2.2 Comments on the Variable-Order Segmentation Algorithm

The variable-order region growing strategy has been shown to work impressively on a wide

variety of data [22, 25, 26] because its underlying assumption of spatial coherence is very general.

As will be discussed later, the computation of surface curvature descriptors using digital

kemel-type partial differentiation of the image is trustable. The algorithm often generated a very

fragmented initial segmentation. Since the purpose of this segmentation is only to provide a first

guess for variable-order fitting and region growing, the only criterion for this initial segmentation

is that it yields hypotheses of contiguous (spatially coherent) regions. A simple smoothing filter

which rejects regions of data discontinuity like the morphological spherical filter[70] could be
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, Ringing in a high order polynomial fit
to a plane (effect exaggerated for illustration)

Figure 4.2: Ringing occurs when one fits a higher order function to the data than is necessary.

used to provide more stable initial seed regions. A similar algorithm using variable scale edge

detectors is described in [123].

Experiments performed with this algorithm on laser data showed that the variable-order

segmentation often (for most regions) bottomed out at the order limit. It fitted the highest

allowable order surface (biquartic in the program used) even if the original data was planar. The

reason for this is that the higher order surfaces are more compliant to sampling measurement

noise, often yielding better goodness-of-fit measures than lower order surfaces. This said, one

may be tempted to skip variable order fitting and simply fit high order surfaces to the data from

the very beginning. Such an exercise, however, is susceptible to the common illness which

infects splining operations. A surface order that is too high suffers from the problem of 'ringing'

(see figure 4.2). Variable order fitting will reject higher order fits in which ringing occurs because

it terminates when an error threshold is satisfied. This accepts the lowest order fit which fits the

data before severe ringing can begin.

The surfaces generated by the algorithm are smooth regions which are described by a surface

order and a set of coefficients to the bivariate polynomial function. While this provides a good
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descriptionof thescenein thatonecanreconstructthescenequiteaccuratelybysimplyapplying

thebivariatepolynomialstoeachpointin theregions,it doesnotreadilylenditself to semantic

interpretationof thesurfaces.

4.3 Curvature Analysis and Structural Hypothesis

Sign maps of the Gaussian and mean curvatures of a surface provide a means of describing

the surface in symbolic terms of semantic significance. These curvatures are treated in the field

of classical and modem differential geometry [125, 131]. Besl and Jain discusses the properties

of these surface metrics in great detail in [19, 20, 21, 23, 24, 25, 26] and the application of the

sign maps of these surface curvatures to object recognition is a major portion of Paul Besl's

doctoral dissertation[22]. In our discussion, we shall begin with a review of the mathematics

and proceed to treat the extension of Besl's work to yield stable features whose computation is

robust.

4.3.1 Differential Geometry Review

In classical differential geometry, the shape of a surface is uniquely determined by the first

and second fundamental forms of the surface, I and lI respectively.

As in the previous discussion on surface fitting, the space in which the curvature measures

are computed takes the form of C 2 continuous (twice differentiable) Monge patches.

z =

Applying the parameterization: u = z, v = y such that w = g(u, v), the surface may be

rewritten as the vector:.

w=[ u v 9(u,v) ] (4.32)
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The First Fundamental Form

The first fundamental form of the surface w is given by:

= dw. dw

= (wudu + w_dv). (wudu + wvdv)

= (wu" w_,)du 2 + 2(wu" w_)du dv + (w,_- w,_)dv 2

= Edu 2+Fdv 2+Gdv 2 (4.33)

where

E=wu.w_,; F=wu-wv; G=wv'w,_

The subscripts denote partial differentiation such that

0w 0w

w. = 0---ff; = °

w_, and wv are tangent vectors to the surface at point (u,v,g(u, v)) and form the basis of the

tangent plane T(u, v) of the surface at that point.

Alternatively, the first fundamental form may be written in matrix form as:

I(u,v, du, dv) = [dudv]

d_

dv

= d_r[gld_ (4.34)

where gll = E = w,, •w_,, g12 = Y21 = F = wu •wu and g22 = G = w_ •wv.

The symmetric matrix [g] is known as the metric coefficients, the coefficients of the metric

tensor, the coefficients of the Riemannian metric or simply the metric tensor or metric of the

surface. It should be noted that the E, F and G, and thus the first fundamental form, are defined

only in term of w and its first derivatives. I is therefore an intrinsic property of the surface. It

measures the variation of the surface w at point (u, v) on the Monge basis as a result of some
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movement (du, do) at that point. Some useful properties related to this metric are:

9 = Igl-- Iw_,x wol2

gll = 92__22; g12 = g21 = _gl---_2; 922 _ gll
g g g

where gkt is the (k,l) entry of the inverse matrix of (go)

(4.35)

The Second Fundamental Form

The second fundamental form of a surface w is given by:

lI = -dw. dN

= Wu" b_udu 2 - (w_, • 1_ + w_ • l_u)dudv - w,, • ]qudv 2

= Ldu 2+2Mdudv+Ndv 2 (4.36)

where

1

1_ being the unit normal of the surface given by:

wxlq
lq=_

Iwx lq]

with differential dlq = l_,,du + lq,,dv.

Since the tangent vectors w. and w_ are perpendicular to the normal ,_ for all (u, v),

(4.37)

0 = (w..lq)_ =w...lq + w..sT_

= • N),, = w,v • •o (w_ lq+w. eL

0 = (w_._),, = wo_.r_ + w_ .r_,,

o = (w_•r_)_=w_. r_+ w,,.lq_
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where the double subscripts denote second partial derivatives with respect to the variables indi-

cated by the subscripts, such that

Thus

G92W 02W

Wuu-- Ou 2 ; Wvv- OqV2

02W

wuv = wvu -- Ou(gv

Wuu'57 = -wu'Nu

. 57 = -w, . flo = . 57,

Wvv " N = -wv " 57v

L, M and N of the second fundamental form can therefore be written as

L = w_,,, .57 ; M = w_,v-57 ; N = w_o. 57 (4.38)

Alternatively, the second fundamental form may be written in matrix form as:

II(u,v, du, dv) = [du dr]

du

dv

= d_T[b]d_ (4.39)

where bH = L = w.. • 57, b12 = b21 = M = w_,v • 57 and b_2 = N = w,_,_• 57.

The symmetric matrix [b] is known as the second fundamental form matrix. It should be

noted that L, M and N, and thus the second fundamental form, am defined not only in terms

of w and its partial derivatives, but also the pointwise surface normal bT. II is therefore said to

be an extrinsic property of the surface. It measures the correlation between the variation of the

normal vector 57 and the variation in surface w at point (u, v) on the Monge basis as a result of

some movement (du, dr) at that point.
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The Wiengarten Map

An ahemative way to view the first and second fundamental forms is by means of the

Wiengarten map L which is defined as follows:

The Wiengarten map L is, for each point P E w, the function L : Tpw ---, Ra given

by L(w) = -w. N where Tpw is the tangent space of the surface w at point P.[131]

This is a linear mapping of. vectors in the tangent plane to other vectors in the tangent plane

and describes the directional derivative of the normal vector to the surface. L can be defined in

terms of the matrices of the first and second fundamental forms by:

= o,.L = [g-'IN (4.40)

where £Jk is the (j, k) element of the Wiengarten map L.

The E, F, G, L, M, N notation of the first and second fundamental forms are more suited for

some purposes, while for others, it is more convenient to use the Wiengarten map as an operator.

4.3.2 Differential Geometry-Based Surface Properties

A number of important surface properties can be computed from the first and second funda-

mental forms and the Wiengarten map, I, lI and L respectively.

Normal and Principal Curvatures

Let some space curve s lie in the surface w defined on the Monge space (u, v). The normal

curvature vector k,, of s at point P = (u, v) is the vector projection of the curvature vector k of

s at that point onto the normal N of w. i.e.

k_

(4.41)
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where

= k. N (4.42)

is known as the normal curvature.

Parameterizing the curve in t such that the sur-

face along s is given by w = [ u(t) v(t) g(u(t),v(t)) ], the unit tangent vector t of s is

aw/i a'wt 4t dt a_,given by t = _ = "_'t "7"/'zand the curvature vector k at P is given by k = _ = 7_/t'7/" I

Applying the fact that k and N are perpendicular by definition, equation 4.42 expands to:

/_rL --"

(w,_ + w_) . (N_,_ + N_)

(wo +
,_ _¢ du dv dv 2

= L.-_ 2 + z,_-ff[--_ + N_ (4.43)
E_2 9r_d_ _d_,2

dt ÷ "_ dt at ÷ G'_

It should be observed that by factoring out from both the numerator and denominator

of equation 4.43, _¢,_is dependent only on the ratio of _t to _ and not their absolute values.

Hence, one may consider the normal curvature at point P in the direction du : dr, du _ 0 and

dv _ O, in terms the first and second fundamental forms:

L du _ + 2M dudv + Ndv _

E du 2 + 2F du dv + G dv 2

II

I
(4.44)

The principal curvatures J¢_ and J¢2 of a surface w are the maximal and minimal normal

curvatures of the surface corresponding to the principal directions. In terms of the Wiengarten

map L, the principal curvatures are the eigen values of L, the corresponding eigen vectors of

which define the principal directions. The principal curvatures and directions of a surface at

point P can therefore be viewed as the extrema of the Wiengarten map of the surface at that

point. Solving the system, _q and t¢2 can be expressed in terms of E, F, 67, L, M, N as the roots

of:

( EG - F2)_ 2 - (EN + GL - 2FM)_ + (LN - M 2) = 0 (4.45)



78

or

-B 4- v/B 2 - 4AC

_1,2 = 2A

where A = (EG - F2); B = (EN + GL - 2FM) and C = (LN - M2).

The principal directions are defined by the roots of:

(4.46)

(£N - GM)tan2¢ + (£N - GL)tan¢ + (£M - FL) = 0 (4.47)

or

-B 4- _/B 2 - 4AC)¢1,2 = tan-l "_ (4.48)

where A = (FN - GM); B = (EN - GL) and C = ( EM - FL).

Since the principal curvatures of a surface at a point are the maximal and minimal normal

curvatures of the surface at that point, principal curvatures and directions are suitable for appli-

cation to the generation of hypotheses for cylinder parameter estimation. This will be considered

later in our discussion of the axis of sweep of cylinders.

Gaussian and Mean Curvatures

The Gaussian curvature K and the mean curvature H of a surface

'*'= [u , g(,,,,,)] ]

are defined as follows:

The Gaussian curvature of w at point P is the determinant of the Wiengarten map ILl

at that point. The mean curvature of w at point P is half the trace of the Wiengarten

map ½trace (L) at that point.

Thus,

K = ILl = det ([g-'][b])
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H

= det[g -1] det[b]

1 trace [g-_][b]m

2

(4.49)

(4.50)

In the E, F, G, L, M, N notations of the first and second fundamental form, these become:

LM - N 2
K - (4.51)

EF- F 2

EN + GL - 2FM
H = (4.52)

2( EG - F 2)

Applying equation 4.34, equation 4.39, and the relations given in equation 4.35 to

equation 4.49 and equation 4.50 respectively, and solving for in terms of g(u, v) (where

w=[ u v g(u,v) ]),wehave

K = guugvv - 9_v (4.53)
(1 + g_ + g_)_

H = gu_,(1 + g_) + gov(l + g_) - 2g_,g,,g_,v (4.54)

2 + +

where the subscripts of g denote partial differentiation. For example,

1 at og( , ,,)

These curvatures possess the following properties:

• The Gaussian and mean curvatures are invariant with respect to viewing perspective (ro-

tation, translation and scale) and depend solely on the shape of the surface.

• The Gaussian curvature K at a point on the Monge basis (z, y) is an intrinsic property of

the surface at that point. This means that it is determined only by the local variations of the

surface and not by how that surface is embedded in a higher dimensional space. One may

think of this as the microbe-eye-view of the surface. If a microbe sits at a point (x, y, z) of
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H<0

H=0

H>O

K>0

peak

none

pit

K=O K<0

ridge

plane

valley

saddle

ridge

minimal

surface

saddle

valley

Table 4.1: Surface interpretation of Gaussian curvature (K) and mean curvature (H) signs

the surface and views its surroundings, taking measurements of the surface around itself,

the results it obtains are completely intrinsic to the surface at that point. If the entire

surface were bent in some form (but not stretched or creased to form a discontinuity in

the surface), the local readings taken by the microbe would remain stable. Under such a

bending of the surface, the mean curvature would change, making it an extrinsic surface

property.

• The Gaussian and mean curvatures are related to the principal curvatures nl, n2 as follows:

H = (kx + k2). K = _1_2
2

or

_I,2 = H + x/_- K

• Surfaces may be typed by observing the signs of the Gaussian and mean curvatures as

shown in table 4. I.

The properties of these curvatures and the ease with which they yield surface typing make

them a desirable metric for the computation of features for matching. The invariance of the
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VALLEY _

Figure 4.3: The eight surfaces types described by the curvature sign map

curvature sign map to perspective transformation permits one to perform matching of model

region adjacency graphs to the regions in the curvature sign map. That these curvatures are local

to surface regions make them stable under occlusion. The visible shapes of these features are

shown in figure 4.3.

Surface Area

The surface area of the patch w can be computed from the first fundamental form. The

square root of the determinant of the metric tensor (g = lgl) summed over the patch yields the

surface area as follows:

v_ = 4Ea- F_ = _/1+ gJ + gv_

Surface Area = f f v_du dv (4.55)
JJ

4.3.3 Problems with Digital Computation of Curvature Sign Maps

In practice, however, serious problems exist in the computation of features derived from

curvature sign maps. These problems which are discussed in [25] caused Besl to abandon the
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useof thesefeaturesper se for symbolic feature matching purposes. In his work, he reduced

the importance of these features and used them to generate seed regions which are then grown

in the variable order segmentation strategy discussed earlier. These problems are by and large

associated with the computation of the curvatures from digital data.

The usual methods for computing surface curvatures in a digital image are the digital kernel-

type computation of derivatives employed by Besl in his work and the facet model approach of

Haralick et. al. [87].

Besl utilized kernel operators comprising the following:

fu=D_,*S*f

f_,_,=D_,,,,S,f

f_o=D_,,_,S,f

where

S

Dz

f

denotes convolution

is the binomial smoothing window

are the weighted least squares derivative estimation windows

is the bivariate function describing image

The binomial smoothing window S is given by S = ggT, where

I

g= _[ I 6 15 20 15 6 1] r

The weighted least squares derivative estimation windows are given by:

D,,=44 =44

D,_,-_ T
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N.B. See figure 8.7 for the key to the surface type labels.

Figure 4.4: The curvature sign map computed by the application of kernel-type convolution

operators

For a 7 x 7 window (as used by Besl), the column vectors do, d_ and d_ are given by:

I
7[1 i 1 I i i 1] T

- _[-2 -3 -I 0 i 2 3 ]r

= _[ 5 0 -3 =4 -3 0 5 ]r

An extensive set of such window operators is detailed in [17].

Derivatives generated by convolving these operators With the digital image turn out to be

extremely noisy. This is due mainly to digital quantization noise and measurement error. Fig-

ure 4.4 shows the Gaussian and mean curvature sign map computed on a 200 × 200 range image
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of amodelof thespaceshuttleusingthekernelconvolutionoperators.Noticehowthesurface

regionsarefragmentedandbearlittle resemblanceto thesurfacedescriptionexpected.

Haralicket. al. [86,87,88, 124]computedprincipalcurvature-basedfeaturesin intensity

usingthefacet model approach. A linear surface model such as a bicubic surface is applied

to the image. Each K x K neighbourhood around a point (z, y) in the image is fitted to the

facet surface model to obtain the coefficients of the surface fit at that point. If a goodness of fit

threshold is exceeded, the point is discarded as the location of surface discontinuity; otherwise,

the coefficients are used to compute the curvature values analytically. Haralick et. al. reported

reasonable success in computing features in intensity images. The features 'peak, pit, ridge,

ravine, saddle, flat and hillside' were computed from the zero-crossover maps of the principal

curvatures and these corresponded with the highlighting of edges in the images etc. In the course

of this dissertation, the facet model algorithm was replicated and run on range imagery. The

resulting feature maps were no better than figure 4.4. Unless the kernels are made so large as to

make it encompass more than one contiguous surface most of the time, the digital sampling and

measurement noise render the local facet fit meaningless. The reason the facet model (and the

kernel-type convolution computations) work better on intensity images is that intensity image

sensors such as phosphor-based and CCD cameras are subject to a certain amount of image

blooming and cross-pixel diffusion. This implicitly smooths the image sufficiently to make

the local fits and digitally computed partial derivatives meaningful. Such smoothing is not as

dominant in laser range imagery.

4.3.4 Analytical Curvature Computation from Fitted High Order Surfaces

Until the technology for laser range sensors with sufficient range resolution is available,

techniques have to be developed for the computation of surface partial derivatives if these math-

ematically appealing curvature features are to be used. A solution to the problem of quantization
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noisemaybetosmooththeimagesbeforetheyaresubjectedtoeitherkernelconvolutionor facet

modelcomputations.Theproblemwiththisapproachis thatsmoothingaltersthestructure(and

curvature)of the imagesurfaces(evenif adaptivefiltersareusedto avoidinadvertentmerging

of discontinuoussurfaces).

A solutiondevelopedin thecourseof thisdissertationis to exploitthesegmentedcontiguous

surfacesto whichhighorderpolynomialshavebeenfitted. Theseyield a closedform mathe-

maticaldescriptionof thesurfaces.Assumingthatasurfaceorderhasbeenselectedto represent

accuratelythesurface,surfacecurvaturescanbecomputedfor eachpoint(z, y) in thesurface

analytically.Thisprocesshasthefollowingadvantages:

• Sincethehighordersurfaceis fittedto anentiresmoothregion,thesurfacedescriptionat

eachpointonthesurfaceis baseduponagreateramountof datathanthepointsin a local

window.

• Thecurvaturecomputationis validto thedegreethatthepolynomialsurfaceis faithfulto

thedata.

• Sincethecontiguoussurfaceis computedby adaptiveregiongrowing,it actuallycreeps

close to the edge discontinuities without crossing them, permitting curvature computations

close to discontinuities in the images.

• The high order surface fit can be thought of as an adaptive filter which smooths the

image yielding an analytically continuous surface. It is possible to extrapolate points

infinitesimally close to each other in full floating-point glory.

• Assuming that the high order fit is accurate, the smoothing implicit to fitting does not

deform the image surfaces significantly.

Figure 4.5 is the Gaussian and mean curvature sign map for the same shuttle image as

figure 4.4 computed from the high order surface fits on the contiguous surface regions. Notice
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N.B.Seefigure8.7forthekeyto thesurfacetypelabels.

Figure4.5:Thecurvaturesignmapcomputedanalyticallyfromthehighordersurfacefits
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howthefeaturescomputedcorrespondto intuitiveexpectations.Thewingsandtail areplanes,

valleysfill thegapbetweenthewingandthefuselageandthefuselageandshuttleenginesare

ridgeregions.

4.4 The Properties of Biquadratics applied to Cylinder Estimation

Thebi-variatefunctiondescribingathree-dimensionalbiquadraticsurfaceis givenby:

z = a + bz + cy + dzy + ex 2 + f y2 (4.56)

It would be beneficial to discuss the motivation of using this function and to have a intuitive

grasp of how this equation can represent cylindrical forms before taking a plunge into derivations

and proofs.

First of all, one may make observations concerning the second partial derivatives of the

biquadratic form with respect to z and y.

02Z
= e (4.57)

Ox 2

02z
= f (4,58)

Oy 2

These equations yield the partial acceleration vector [112] which describes the direction of max-

imal acceleration. This indicates that there would be a constant direction of maximal acceleration

that is homogeneous throughout the entire surface. This means that if a biquadratic surface is

fitted to a cylindrical surface (either convex or concave), the orientation of the cylinder axis pro-

jection onto the x-y plane can be computed. This projection is perpendicular to the acceleration

vector. It will be shown later that the gradient of the cylinder axis is the arctangent of the root of

the quotient of e and f, but the present discussion serves to indicate the promise of biquadratics

in fitting cylinders and cones (which also have constant directions of maximal acceleration).

Second, the two-dimensional function

0 = a + bx + cy + dzy + ez 2 + fy2 (4.59)
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describestheellipse,parabola,hyperbola(ora limitingformof one of these [ 115, 166] as will be

shown later). These forms correspond to plane sections of a fight circular cone, and are therefore

known as conic sections or conics Since for any z = z' in equation 4.56, equation 4.59 can be

obtained with a' = a + z', all horizontal cross-sections of biquadratic surfaces are conics.

Finally, a fundamental property of biquadratics is that it is a symmetric function. It will

be shown that with an appropriate rotation of coordinate axes, the cross-variable term zy can

be eliminated. This holds the promise that all smooth symmetric surfaces can be described to

differing degrees of accuracy by biquadratics.

4.4.1 Properties of Biquadraties - A Review.

The bulk of the properties of the three-dimensional biquadratic equation 4.56 can be observed

in its limiting two-dimensional form (with z = 0) in equation 4.59. The present discussion

will therefore begin with a examination of the latter equation. We shall proceed to discuss the

three-dimensional form and finally, we shall form an association between the biquadratic function

with the surface classes obtained from Gaussian and mean curvature sign maps.

4.4.2 The Limiting Two-Dimensional Function

We shall begin our analysis of equation 4.59 by showing that with an appropriate rotation of

the x and y coordinate axes, the zy term can be eliminated, leaving us with a function which

is completely separable in z and y. This will aid us in our second exercise in which we shall

make some geometric sense of function.

Rotation of coordinate axes

Equation 4.59 can be simplified to yield

A + Bu + Cv + Eu 2 + Fv _ = 0 (4.60)
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(withno uv term) by a rotation of axes[ll5, 166].

Rotating the x-y axes by # with the formulae

z = ucos0- vsinO

V = usin8 + vcosO (4.61)

equation 4.59 becomes:

a + u(bcos0 + csin0) + v(ccos8 - bsin0) +

u2(ecos_8 + fsin20 + dsin0cos0) +

v_(esin28 + fcos2_ - dsin0cosS) +

uv(d(cos20 - sin20)+ 2sin0cos0(f - e)) = 0 (4.62)

By application of trigonometric identifies, the coefficient of the uv term of equation 4.62

d(cos_O - sin20) + 2sinOcosO(f - e)

reduces to

dcos20 - (e - f)sin20

The coefficient of the uv term becomes zero when

Let O' = tan-I (_-_7)

dcos20 = (e- f)sin20

d
tan20 -

e-f

__r < 01 < __
2 - - 2

20 = ...01-2r,OI-r,Ol,01+Tr,Ol+2r...

= _'+ nr (n = ...- 1,0, 1, 2,...)

(4.63)

o - (r_= ... - 1, o, 1,2,...) (4.64)
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Equation 4.64 is periodic on 4" This result is significant, because, as will be evident later,

0 defines the principal axes of the conic described by equation 4.59 and its three-dimensional

counterpart. What has been shown thus far is that:

For every two-dimensional quadratic equation

a + bx + cy + dxy + ex _ + fy2 = O

there exists a rotation of the coordinate system with interval _ which will eliminate

the cross-variable xy term.

Geometric Descriptions

We shall now make some observations concerning the simplified equation 4.60

A + Bu + Cv + Eu _ + Fv _ = 0

If both E and F are zero, the function degenerates to a planar equation. This degenerate

case is of no interest to cylindrical/conical hypothesis generation.

Parabolas

When E is zero, equation 4.60 takes the form:

a+bz+cy+fy 2 =0

Performing the translation x = u + h, _/= v + k; we get:

(a + bh + ck + fk 2) + bu + v(c + 2fk) + fv 2 =0 (4.65)

When k = -_, the v term drops out and equation 4.65 becomes:

C 2

(a + bh - -._) + bu + f v2 = 0 (4.66)

We can now remove the constant term with the substitution h = _ 4--1- a and obtain the form:

fv 2 + bu = 0 (4.67)
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If bothB and E are zero in equation 4.60, equation 4.66 becomes:

C 2

(a - + fv - 0

or

l(c )V2--" 7 a--

c 2

If -_(a - 7"]/) is positive, the function describes two lines parallel to the u-axis; if it is zero, the

locus of the function lies along the u-axis; if it is negative, the locus of the function is imaginary.

Similarly when F is zero, equation 4.60 can be simplified by translations of z = u + h,

y = v + k; where

to yield:

)_ _ a

h= 2e c

eu _ + cv = 0 (4.68)

The same analysis applied to B and E being zero also applies to C and F being zero. Both

equation 4.67 and equation 4.68 are parabolas. It should be observed that the translations per-

formed shift the coordinate axes to the axes of symmetry of the function and that the coefficients

of the second order terms remain the same.

That the parabola is a conic section can be seen in the following analysis[166]. Let OAB be

a vertical cross-section of a fight-circular cone (figure 4.6). A plane perpendicular to GAB and

parallel to OA will intersect the cone producing the section CND. Let the locus of intersection

between the two planes be MN as shown in the figure. Let a horizontal plane pass through the

cone forming the circular section FPG (where P is a point of intersection between the plane

and CND). This plane intersects with planes OAB and CND at point Q. Let a horizontal

plane passing through point N intersect the cone producing the circular section of diameter HN.

Now, PQ lies on CND and is perpendicular to NM. Assigning a coordinate plane with N as

the origin and NM as the z-axis, we have x = NQ and y = QP. Since NM is parallel to
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O

H

D

Figure 4.6: The parabola as a conic section
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HN

QG = -_--_x (4.69)

Since QP is perpendicular to FG, and FG is the diameter of FPG (see inset of figure 4.6),

y2 _ [Q pi2 = FQ . QG

Since HNQF forms a parallelogram, and IFQI

4.69 and equation 4.70 yield:

(4.70)

HN 2
y2 _ x (4.71)

01t

Since HN and OH are constants for any sectioning plane parallel to OA, equation 4.7I is

similar in form to equation 4.67 and equation 4.68.

Ellipses

When E and F in equation 4.60 have the same sign, applying the translations x = u + h,

y=v+k;weget:

(a+bh+ck+eh 2+fk 2)+u(b+2eh)+v(c+2fk)+eu 2+fv _ =0 (4.72)

When h = -_ and k = -'_'7' the u and v terms drop out and equation 4.72 becomes:

b2 c2

(a 4e "4"f) + eu2 + fv: = 0

I(. + eu 2 + fv 2 = 0 (4.73)

If K; has the same sign as E and F, the function describes an ellipse; if K: is zero, the function

degenerates into a single point and if K: differs in sign from E and F, the locus of the function

is imaginary.

That the ellipse is a conic section can be seen in the following analysis[166], Let OAB

be a vertical cross-section of a right-circular cone (figure 4.7). A plane WXYZ perpendicular

to OAB at an angle from the horizontal intersecting the cone produces a symmetric section,

the axis of which is MN (the locus of intersection). Let C be the midpoint of MN. Passing

= IQPI, I11NI = tQPI. Hence, equation
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Figure 4.7: The ellipse as a conic section
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horizontal planes through C and any other point Q on MN, we get two circular sections of

which HK and FG respectively are diameters. The locus of intersection between WXYZ and

the horizontal plane through Q forms the line QP which is perpendicular to MN and FG. In

circles H RK and FPG, C R and Q P are perpendicular to diameters H K and FG respectively.

Thus,

ICRI 2 = HC .CK

1OPI 2 = FQ.QG (4.74)

Since FQ and HC are parallel, triangles MQF and NCK are similar to triangles MHC and

NQG respectively. Thus,

FQ MQ

HC MC

QG QN
CK CN

(4.75)

Now, CR and MN are perpendicular in plane WXYZ. Taking MN as the x-axis with C as

the origin, the coordinates of point P are z = CQ and y = QP. Thus equations 4.74 and

equations 4.75 yield:

IQPI 2 FQ. QG

[CRI 2 HC • CK

y2 MQ ON

ICRI 2 MC CN
(4.76)

Since CN and CR are constants for any sectioning plane WXY Z, we let ICNI = IMCI - a

and ICR[ = b. Thus QN = a- x and MQ = a + x. Equation 4.76 becomes:

y2 (a+x)(a-x)
•_" = a2

yielding:

x 2 y2

_- + _- = 1 (4.77)

or

b2z 2 + a2y 2 - a2b _ = 0 (4.78)
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-I--_-- Q

',I

Figure 4.8: The h:gperbola as a conic section

Equation 4.78 is isomorphic with equation 4.73 (E and F having the same sign) with a constant

translation.

Hyperbolas

When E and F in equation 4.60 are of different signs, equation 4.73

tC + eu 2 + fv _ = 0

describes a hyperbola unless/C is zero. If/C is zero, the locus equation 4.73 is a pair of lines

intersecting at the u - v origin.

That the hyperbola is a conic section can be seen in the following analysis[166]. Let OAB

and OCT be the vertical cross-sections of right-circular cones as shown in figure 4.8. A plane
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WXYZ perpendicular to OAB (and OST) at an angle from the horizontal intersecting the cones

produces a section on each cone. Let the intersection of the plane WXYZ and OS and OB be

M and N respectively, and let C be the midpoint of MN. Passing horizontal planes through C

and any other point Q on MN extended into the lower section, we get two circular sections of

which HK and FG respectively are diameters. The locus of intersection between WXYZ and

the horizontal plane through Q forms the line QP which is perpendicular to MN and FG. In

FPG, Q P is perpendicular to diameter FG. Thus,

[QP[: = FQ . QG (4.79)

Since FQ and KC are parallel, triangles MFQ and NQG are similar to triangles MKC and

HCN respectively. Thus,

FQ MQ
KC MC

QG NQ

HC CN
(4.80)

Now, CR and MN are perpendicular in plane WXYZ. Taking MN as the x-axis with C as

the origin, the coordinates of point P are x = CQ and y = QP. Thus equations 4.79 and

equations 4.80 yield:

MQ NQ
(4.81)

Since CN and KC are constants for any sectioning plane WXY Z, we let ICN[ = IMCI = a

and IKC[ .1HC[ = b2. ThusMQ = a + z and NQ = a - z. Equation 4.81 becomes:

b 2

y2 _. -_(a + x)(a- x)

yielding:

or

X2 y2

a s b2
=1 (4.82)

b2x 2 - a2y 2 - a2b 2 = 0 (4.83)
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Equation4.83is isomorphicwithequation4.73(E andF having different signs) with a constant

translation.

The Characteristic of the Two-Dimensional Quadratic Form

In the two-dimensional quadratic form, the quantity

d 2 - 4ef (4.84)

known as the characteristic of the quadratic form is invariant through rotation and translation of

the coordinate axis.

When the function is rotated through angle 0 the first three terms of the rotated form are:

(ecos20 + fsin_O + dsinOcosO) u 2 +

(esin20 + fcos_O - dsinOcosO) v_ +

(d(cos20 -sin20)+ 2sinOcosO(f -e)) uv

Letting the corresponding coefficients of the rotated equation be d', e', f' such that

e' = (ecos20 + fsin20 + dsinOcosO)

/' = (esin20 +/cos20 - dsinOcosO)

= (d(cos20 -sin20)+ 2sinOcosO(f - e))
d'

the characteristic of the rotated form

dI _ 4elf I

becomes:

d2cos40 + d2sin40 _ 8efsin20cos20 - 4e/sin20

+ 4efcos40 + 2d2sin2Ocos20

= (d 2 - 4ef)(cos40 + 2sin_0cos20 + sin40
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d 2 - 4ef < 0

d _ - 4ef = 0

d 2 - 4ef > 0

Ellipse

Parabola

Hyperbola

Table 4.2: Summary of a + bz + cy + dxy + ez 2 + f g2

= (d 2 - 4ef)(cos20 + 2sin20) 2

= d2 - 4ef

= 0 forms

By the application of similar trigonometric manipulation, it can also be shown that with any

translation z = u + h, y = v + k, the characteristic remains constant.

The characteristic of the two-dimensional biquadratic form determines the shape of the curve

as shown in table 4.2.

The Limiting Two-Dimensional Form - A Summary

In summary, it has been shown that

• The equation

a + bz + cy + dzy + ez 2 + fy2 = 0

can be reduced by some rotation 0 of the coordinate axes to yield the form

A + Bu + Cv + Eu _ + Fv _ = 0

• 0 is given by:

0' + nrr
0-

2
(n = ...- 1,0,1,2,...)

where 0'= tan-_ (e_--4-]dy),and is periodic on _.
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Eand F

Either one zero

Same Sign

Different Signs

FoITn

Parabola

Ellipse

(E t, E' same sign)

Hyperbola

Degenerate Forms

E=0&B=0:

pair of lines parallel to u-axis

F=0&C=0:

pair of lines parallel to v-axis

The solution may be imaginary

(K, E different signs)

imaginary locus.

(K: = 0):

a point

(E =0):

pair of lines intersecting

at the u-v origin.

t • Where K: = A - 4_-_- 4£-_

Table 4.3: Summary of A + Bu + Cv + Eu 2 + Fv 2 = 0 forms
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• TheequationA + Bu + Cv + Eu 2 +/Wv2 = 0 (and thus the full quadratic form from which

it is derived) always defines a conic section or one of its degenerate forms as shown in

table 4.3

• The characteristic d 2 - 4el of the quadratic form is invariant to rotation and translation of

the coordinate axes and describes the shape of the surface as shown in table 4.2.

4.4.3 The Three-Dimensional Biquadratic Function

O_e may think of the three-dimensional biquadratic function (equation 4.56):

z = a + bz + cy + dxy + ez 2 + fy2

for any particular z = z t as the limiting two-dimensional function (equation 4.60) with a trans-

lation along the z-axis of -z'.

Rotation of Coordinate Axes

By performing the same rotation (equation 4.61) and the same analysis in the previous section,

equation 4.56 becomes:

a + u(bcos0 + csin0) + v(ccos0 - bsin0) +

u_(ecos20 + fsin20 + dsinOcosO) +

v2(esin20 + fcos20 - dsinOcosO) +

uv(d(cos20 - sin_0) + 2sinOcosO(f - e)) = z

As before, the coefficient of the uv term becomes zero when

d
tan20 - (equation 4.63)

e-f

and

0t + nTl"
0--

2
(n = ...- 1,0,1,2,...)

(4.85)
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where_9'=tan-' (_---_),andis periodicon ._(equation4.64),

Equation4.56thereforereducesby a rotationof axesby angie_ to:

a + u(bcos8 + csin8) + v(ccos8 - bsin8) +

u2(ecos28 + fsin28 + dsin8cosS) + v2(esin_8 + fcos28 - dsin8cos8)

_g (4.86)

or

This analysis shows that:

A + Bu + Cv + Eu 2 + Fv 2 = z (4.87)

• For every three-dimensional biquadratic equation

a + bz + cy + dzy + ex _ + f y2 = z

there exists a rotation of the coordinate system with interval _ which will eliminate the

cross-variable zy term.

• Since the cross-variable xy term can be removed without altering the shape of the surface

described, a biquadratic surface is necessarily a smooth symmetric surface where the axes

of symmetry are perpendicular.

• The axes of symmetry must be straight lines. This is important for the segmentation of

smooth surfaces (like cylinders and cones merging into planes or other cylinders and cones)

into straight conic units.

Geometric Descriptions

The analysis performed on the limiting case where z = 0 applies also for the general bi-

quadratic function for all values z = z'. The x-y plane may be shifted by letting a' = a - z'
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yielding:

a' + bz + cy + dzy + ez 2 + fy2 =0

The rotated limiting two-dimensional quadratic function (equation 4.62) becomes:

a' + u(bcos0 + csin0) + v(ccos0 - bsin0) +

u2(ecos20 + fsin20 + dsinOcosO) + v2(esin20 + fcos20 - dsinOcosO)

=0

or

where A' = A + z _.

A' + Bu + Cv + Eu 2 + Fv 2 =0

In our earlier discussion of the geometric form of the limiting two-dimensional function, we

determined that this function always defines a conic section. Furthermore, we found that the

shape traced by the locus of the function is determined chiefly by the coefficients of the second

degree terms. This means that the summary rendered in table 4.3 applies to the full three-

dimensional biquadratic function. Notice that in the table A affects only the value of E and

thus affects only the degenerate cases. In fact, in three dimensions, it is far easier to understand

such cases. The limiting two-dimensional function with z = 0 reduces to imaginary roots when

the surface described by the full three-dimensional form does not intersect the x-y plane. The

locus becomes a single point when the three-dimensional form is a ellipsoid, one tangent plane

of which is coplanar with the x-y plane. The locus becomes a pair of parallel lines when the

three-dimensional form is a linearly swept parabola and where the sweep axis lies on a plane

parallel to the x-y plane.
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3-DForm 2-DForm

- 4el < 0 + peak/pit ellipse

d 2 - 4el = 0 0 ridge/valley parabola

d 2 - 4el > 0 - saddle hyperbola

Table 4.4: Comparison between two-dimensional quadratic interpretation and three-dimensional

interpretation of Gaussian curvature (K) signs

4.4.4 Comparison with Curvature evaluation

Having seen the properties of the limiting two-dimensional quadratic form and the three-

dimensional biquadratic surface function, we can relate some of these properties to curvature

analysis to derive a more intuitive feel of what the functions are doing, and how they relate to

each other.

The sign of the Gaussian curvature K for a three-dimensional biquadratic surface is constant

throughout the surface. From equation 4.54, we have

K = g_,,g_v - g_
(1 + g] + g_)2

Since the first partial derivatives of the function cannot be imaginary, the the denominator of

the function is always positive. Hence, the sign of Gaussian curvature depends solely on the the

2
numerator guugo,, - guy. This evaluates to:

sgn(4ef - d2) (4.88)

Equation 4.88 is clearly the negation of the characteristic of the limiting two-dimensional

form in equation 4.84. Table 4.4 cross-references the curvature map table 4.1 and quadratic

characteristic table 4.2.



CHAPTER V

A SPLIT-MERGE STRATEGY FOR STRUCTURAL

COMPONENT EXTRACTION FROM SMOOTH SURFACES

Consider the instance of constructed forms which merge smoothly into other forms in such

a way that there is no local discontinuity anywhere along the seam. Examples of these are

bending pipes elbows, cylinders chamfering into planes, constructed forms meeting in chamfers,

etc. In these cases, local image operators like edge detectors will not separate the components,

and neither will smooth surface finders like the variable order segmentation algorithm described

earlier. There is nothing intrinsic to the data that warrants the segmentation of such merging

forms. The information needed to make such separation lies in the observers 'understanding'

and expectation of the forms.

Let us assume that a range image has been segmented into smooth surfaces which are

described by bivariate polynomials as described previously. Assume also that a hypothesis

has been generated by matching the shape descriptors generated from curvature sign maps to

object models. This hypothesis says that a particular smooth surface represents two or more

structural forms merging smoothly at the seams. The task is to separate these forms and locate

them in R 3 space.

The algorithm described here employs a split-merge paradigm. Since it has been concluded

that nothing intrinsic in the surface warrants any specific partitioning, this split-merge operation

is hypothesis-guided. The splitting operation segments the smooth-regions into sub-'regions by

105
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theapplicationof somecriterionwhichisconsistentwith thehypothesisof theconstructedform

whichoccupiestheregion.Thesesub-regionsarethenmergedusingcompanion linear forms

which either approximate or are identical to the hypothesized constructed forms.

In this chapter, the general split-merge paradigm and algorithm is set forth. The discussion

will be in the following order:

• Hypothesis guided region splitting where the criterion to be satisfied for region splitting is

discussed;

• Region adjacency graphs which describes the basic data structures employed in region

merging;

• Hypothesis guided region merging where the merging paradigm is set forth;

• Companion linear forms and the merging predicate where the criterion for merging regions

is established; and

• The hypothesis-guided split-merge algorithm where the overall algorithm is discussed.

The particular operations for the split-merge extraction of planes, cylinders and cones will

be set forth in the next section.

5.1 Hypothesis Guided Region Splitting

Let a smooth region described by a surface function S(u, v) on a Monge basis (u, v) be

a representation of one or more smoothly merging constructed surfaces (e.g. cylinders, cones,

planes etc.). The purpose of splitting the surface into sub-regions is to obtain a set of sub-regions

each member of which is in one and only one constructed surface.

Let (c_ E C) be the set of N constructed surfaces represented by an overarching surface

S(u,v). C is by definition a disjoint set such that {(ci_cj = O) [ Vi _ j}. Let (rj E _) be the

. r=
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RAGnodes

ions

RAG arcs

Figure5.1: A Region Adjacency Graph where the nodes represent regions and the undirected

arcs represent the adjacency relationship among regions.

set of M sub-regions obtained by the splitting the surface S. Again, _ is a disjoint set such that

{(ri f"lrj = O) I Vi # j}. It is desired that

(riCcj) and(riCck)iff(j=k)V(l<i<M)and(l<_j,k<_N) (5.1)

We shall call equation 5.1 the splitting criterion.

We have already seen that nothing intrinsic to the data warrants such splitting. To perform

such a split, one must operate on a hypothesis of the forms that are present in the image.

It is further argued that all splitting operations are hypothesis based. If one applies the

split-merge to extract regions of similar brightness from an intensity image, one would split the

image differently than if the intent were to obtain regions of similar brightness gradient. The

abstaction-based regimen which serves as the underpinning strategy for this work simply makes

this explicit.

5.2 Region Adjacency Graphs

The basic structure employed in the region merging process is the region adjacency graph

which was first introduced by Brice and Fennema[45]. A region adjacency graph is an undirected
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graphdescriptionof asetof regionsin animage.The nodes of the graph represent the regions

and the undirected arcs between nodes represent adjacency relationships of the nodes.

The adjacency relationship is usually determined in terms of 4-connected or 8-connected

neighbourhoods. Thus regions r i and rj in the graph (here we use the notation for regions and

nodes interchangeably to simplify discussion) are adjacent if and only if some subset of T'i is

4-connected or 8-connected with 79.i (where 791and 7' i are the sets of pixels constituting ri and

r i respectively). We shall denote this such a relationship ri adj rj.

A representation of such a graph is shown in figure 5.1.

5.3 Hypothesis Guided Region Merging

Let (rj E 7"¢) be the set of M sub-regions obtained by a splitting operation which satisfies

the splitting criterion of equation 5.1:

(ri C cj) and (ri C ck)iff(j = k) V(1 < i < M) and (1 < j,k <_ N)

The purpose of region merging is to recover the desired {ci E C ] (1 < i < N)} (N being the

number of desired surfaces constituted of _). In the context of this work, C is the set of

constructed surfaces within a smooth surface represented by some high order surface function.

Define form-set {Oi E I(1 _< i _< K)} as the set of K forms or classifications into which

the splitted regions may be grouped. Define the merging predicate A4i which determines if a

sub-set of adjacent splitted regions [r i] belongs to the same instance of class Oi, i.e.,

M, ([,-j]) ([,-j]c (5.2)

where .T_, is an instance of class Oi. The requirement of adjacency may be relaxed to allow the

reconstruction of surfaces which are fragmented by occlusion, but such a relaxation is usually

employed to merge the larger regions which result from the coalescing of all adjacent splitted

regions.
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It is obviousthat theselectionof the mergingpredicate,_i in anycoalescingoperation

to uncoverconstructedsurfaceshasto behypothesisguided.Later,weshallconsideraform

set which comprises planes and cylinders. For now, we shall consider the general notion of

companion linear forms as operators in the merging predicate.

5.4 Companion Linear Forms and the Merging Predicate

A companion linear form to a constructed surface form is one which either approximates or is

identical to the constructed form and is linear in terms of its orienting parameters. In other words,

if a set of pixels P in an image is due to constructed form (c_ E C) (in accordance to notation

introduced in section 5.1), and if (Ai E A) is the companion linear form to ci, then 79 fits to form

)q within some criterion based upon the goodness-of-fit. The motivation for companion linear

forms is that they are easier to fit to the data than the original forms which may be non-linear

with respect to their orienting parameters.

Companion linear forms are applied in the merging process as an operator in the merging

predicate ,'vlk to determine if the regions in some set of adjacent splitted sub-regions [r_] should

be merged.

Since the decision whether to merge the regions is based upon how well they fit the companion

linear form, the goodness-of-fit measure is critical to the process. In the section 4.1.3 discussion

of parameter estimation, it was shown that if a Gaussian noise distribution is assumed for the

data, the X 2 measure:
N

i=1 O'i

(equation 4.7) is a good measure of how well a bivariate function f(z, y) fits a set of N data

points. Thus the X 2 measure may be used as a merging predicate operator. When the data points

U_l Pi of the set of sub-regions [ri] (where Pi is the set of points in sub-region ri) are fitted

by the companion linear form to the hypothesized constructed form within some X 2 tolerance,
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thesub-regionsmaybesaidto becompatibleunderthe imposedhypothesis.Sincetheareaof

theregionbeingfittedvaries,theX2valueshouldbenormalizedby theareaof theregion.The

mergingpredicateoperatormaybewrittenas:

,':',,:,,,I<,,,,-..,-(t,,J:-..,,I (5.3>

where M is the number of regions being merged, .Fk is a surface of the constructed form

corresponding to the companion linear form described by the bivariate function f, a is the set of

parameters of f obtained by fitting the f to [.,IM179i, N is the total number of pixels in regions

being merged, E×-sq is the "(u error bound, and X is the function for computing the X 2 given by

equation 4.7.

Equation 5.3 leaves something to be desired in the region merging paradigm. Let some set of

sub-regions R be determined to belong to the same constructed surface. The merging algorithm

now considers merging some sub-region rk to R. The fitting of (R U {rk}) to the companion

linear form yields the function f(z, b'), and equation 5.3 is satisfied in that the ,k2 value for

the new region falls within the tolerance bound. The problem is that rk is much smaller than

the regions encompassed by R and the ,(2 expression (equation 4.7) is heavily weighted by _?.

As sufficient erroneous sub-regions are incorporated, the X 2 tolerance bound will eventually be

exceeded. We are therefore faced with the slippery slope problem of determining at what point

the error began. It is impossible to set cx_s q to be so sensitive as to reject such spurious region

recruitment without making the system unstable.

Clearly equation 5.3 has to be augmented to solve the problem. This may be done by

obtaining the X 2 errors (after a is obtained by fitting of (R U {rk})) of the fit of f to each of

(_ U "Irk}), _, and r_. If the ?(2 error bound is exceeded for any one of the three, the merge is

abandoned. Thus equation 5.3 may be modified to yield the merging predicate given by:

CONNECTED ([r;])
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[ M

X(Y',, f, a) < E×__q'_
/

P,, f, a) < Ex_sq)

IV(: < i < M)}

--, (Jr/] _C_'k) (5.4)

This is the merging predicate applied to the merging algorithm.

Notice that the parameters of the companion linear form are estimated directly from the

original data. This keeps the algorithm stimulus bound in the merging operation while it operates

upon _he higher level hypothesis. Another comment to be made about merging predicate is that

the use of the X 2 measure as a threshold in the merging algorithm is not as dependent upon

the Gaussian assumption as is the fitting algorithm because the X 2 measure is used only as a

comparison of fitting accuracies for purposes of hypothesis verification. All this process needs

to claim is that a poorer ;_2 value signifies a poorer fit for a particular signal to noise ratio in the

data. It will be shown later how companion linear forms are capable of parameter estimation of

the constructed forms as well.

5.5 The Hypothesis-Guided Split-Merge Algorithm

Assume that the hypothesis generation process has produced a hypothesis (by matching

models to the Gaussian-mean curvature sign map and the smooth surface segmentation with high

order polynomials) that N constructed surfaces {Cl... c_v} are present in an image, and that

these constructed surfaces are embedded in K smooth surfaces {s_ ... SK}. Assume, too, that

the hypothesis yields an approximate mapping from {cx... cN} to {sl... sK} (i.e. the subset

of smooth surfaces which encompasses each particular constructed surface is contained in the

hypothesis). Normally the subset of smooth surfaces which encompasses a particular constructed

surface has only one member since constructed surfaces are usually wholly contained in one

smooth surface, but this is not always the case. Figure 5.2 is an example of such a mapping

hypothesis. While cylinders may be modeled with one high order polynomial the torus in the
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Smooth

Ions

Figure 5.2: The entire smooth surface of a torus is split into four smooth polynomial surfaces.

The region boundaries cannot be predicted.

figure encompasses four such surfaces.

The algorithm is as follows:

1. Pick a hypothesized constructed surface c,. which has not yet been processed through the

algorithm and let the hypothesized set of smooth surfaces which is encompassed by c, be

2. Split each member of Si into sub-regions {rj E _i I 1 < j < M} in accordance to the

splitting criterion in equation 5.1 (The splitting operator is determined by the type of

surface of the hypothesized constructed surface ci).

3. Each subregion rj is assigned a split-parent pointer to the original smooth surface out of

which it is split and each smooth surface is assigned a set of split-children pointers to the

set of sub-regions generated. The pointers themselves are grouped by labels indicating the

splitting operation employed.

4. Organize _i into a region adjacency graph (RAG).

5. Let the bivariate function f describe the companion linear form of ci.
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(a) Pick a seed node rs in the RAG which is most likely inside ci. (This is done by

estimating the center of the hypothesized surface and finding the member of 74 which

contains it or whose centroid is closest to it.)

(b) Fit function f to the set of data points 7:'s in r, and obtain the set of parameters to

f, a.

(c) Compute the normalized X 2 error of the fit (equation 5.3). If this error exceeds the

X 2 error bound Ex_sq, remove r, from the RAGt and goto step 5a.

(d) If there are no adjacent nodes of the RAG to r,, assign ci the region occupancy of

r, and goto step 6.

(e) Pick a sub-region rk which is adjacent to rs and fit function f to the set of data

points 79, in {rs, rk} and obtain the set of parameters to f, a.

(f) Apply the merging predicate in equation 5.4 to the set {r,, rk}. If equation 5.4

resolves to TRUE, fuse ]. re and rk in the RAG, set re := (r,, rk}, and goto step 5e;

else, remove rk from the RAG and goto step 5e.

6. Reduce the region occupancy of each member of Si to reflect the removal of r, and goto

step 1.

To fuse nodes [ri] in a region adjacency graph,

1. Create a new node rk

2. Set the region occupancy to the total occupancy of the merged nodes.

3. For each node in It,]

• Remove all adjacency arcs which terminate at nodes inside [ri].

• For each adjacency arc leading to some node rm outside [ri], redirect the arc to

link rm to r k.
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• Include the node in the constituency list of rk. (The new node will therefore

have a pointer to the original smooth surface regions with which it intersects).

+ ." To remove a node r_ from the RAG, remove all adjacency arcs joining rk with other nodes

in the RAG. Note that this may split the RAG into two RAGs, but the seed region rs

would maintain its adjacency arcs to the RAG to which it is connected.

5.6 Specifics on the Split-Merge Extraction of Planes and Cylinders

Now that the general framework for the split-merge operation has been set forth, we shall

proceed to the specifics of the splitting operators and companion linear forms for the constructed

forms of choice in this work: planes and cylinders.

In overview, the split-merge operation for planes and cylinders is accomplished using the

following concepts:

Planes : Three concepts are applied to the extraction of planar regions from a smooth surface:

• The surface normals of a plane is constant throughout the plane.

• Planes occur at FLAT regions in the Gaussian-mean curvature sign map (where

(abs(H) < EH) and (abs(K) < eK)).

• Planar surfaces are already linear in form and so, the companion linear form is

identical to the constructed form.

Cylinders : Three concepts may be applied in the extraction of regions which represent cylin-

drical/conical forms from a smooth surface:

• The traces of maximal surface acceleration or curvature run along the circular cross-

section (perpendicular to the axis of rotation of sweep) of cylindrical (or conical)

surfaces.
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5.7

• Regions which represent cylinders (or cones in general) contain RIDGE regions in

!

the Gaussian-mean curvature sign map (where (H < --EH) and (abs(K) < Et<)).

• Biquadratic surfaces are symmetric around the principal axes of the conic section

generated by a horizontal sectioning plane.

Specifics of Hypothesis Guided Smooth Surface Splitting for Planes and Cylin-
ders

In this section, the operators necessary to perform the hypothesis guided splitting of smooth

surface regions in the algorithm outlined in section 5.5 are discussed. Recall that the hypothesis

says that a particular constructed surface ci is embedded in the set of smooth surfaces S,. Each

smooth surface in Si is described by its image region and a high order bivariate polynomial

function.

The goal is to split each member of the smooth surface Si into the set of sub-regions

{rj E _ t 1 < j < M} in accordance to the splitting criterion in equation 5.1. We shall now

describe the splitting operators which apply to hypothesized plane and cylinder surfaces.

5.8 Normal Vector Segmentation

In the case of planes, the split can be based upon the Gaussian and mean curvature sign maps.

One needs to be careful in this. While all planes will map to (abs(H) < e/t) and (abs(K) < e_,.)

regions in the curvature sign map, not all such regions represent true planes. Consider, for

example, regions at the edge of cylinders where the scanning angle is oblique (see figure 5.3).

Quantization and measurement noise in the range sensing and the surface approximation by high

order polynomials make such regions appear planar. It is therefore necessary to have a hypothesis.

that a plane actually exists before labeling the region as a constructed plane.

Consider a situation where a planar region chamfers smoothly into a cylindrical region as

shown in figure 5.4a. The Gaussian-mean curvature sign map would label sub-regions within
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and Oblique angles
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Figure 5.3: The cross-section of a cylindrical surface showing that at the oblique cylinder sur-

faces, the surface appears planar.
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Figure 5.4: a: A plane chamfering into a cylinder, b: The Gaussian-mean curvature sign map

of the smooth region.
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Figure 5.5: a: Two smoothly merging planes, b: The Gaussian-mean curvature sign map of the

smooth region.

the parent smooth region variously as FLAT and RIDGE as shown in figure 5.4b. Clearly,

the curvature sign map which participates in generating the initial hypothesis is incapable of

determining the edge of partition between the planar and cylindrical regions. The same problem

exists in the partitioning of two smoothly merging planes in figure 5.5. The entire smooth region

resolves to one FLAT-labelled region in the Gaussian-mean curvature sign map because the bend

is 'soft' enough that no VALLEY regions show (i.e. the mean curvature H does not go below

-_H for all points in the region).

The key to the extraction of the planar surfaces in figure 5.4 and figure 5.5 lies in an

examination of the inclination or surface normal of the regions and not in the rate of change of

the inclination or surface normals (which yields the curvature).

If we had a scalar metric which measures the likelihood that pixels within a region belong

on the same plane r we could split the parent region into sub-regions in such a way as to satisfy

the splitting criterion of equation 5.1. Introduce the idea of like-normal neigbourhoods. Suppose

we computed the unit normals across the entire smooth region (analytically by computing the
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partialderivativesof theregion)whichis givenby:

-guff- g_ff+ u7N =
x/g,, _ + g_2 + 1

-g_,ff - g.G +

Inl

= n_'ff+ n'ff+ nWu7 (5.5)

where [HI = x/g,, 2 + g.z + 1 is the magnitude of the surface normal.

Since (N = 1), (abs(n _') < 1.0), (abs(n u) < 1.0), and (abs(n _) < 1.0). Hence, define the

like-normal neighbourhood map ,V" as one whose elements are:

(K(1.0 + nU(u, v))rnod8) +

8 (K(1.o + n_(u, v))mod8) +

64 (KnU'(u, v)mod4) (5.6)

where mod is the modulus operator and K is the number of values into which to divide the circle

in each dimension. For example, if (K = 128), the range of variation of the ff and g components

is quantized into 256 values and the range of the u7 component is quantized into 128 values.

The n _° component is scaled at half the n u and n v components because the original surface is a

Monge patch and the u7 component cannot become negative.

This yields a scalar map with values ranging from 0 to 256 in which each value corresponds to

a solid angle of approximately _ steradian wrapped around at intervals of approximately 4,_8X8X4

steradian. The like-normal neighbourhood map is then segmented into connected components

of similar values. Each component, then comprises points which vary in surface normal by no

more than _ steradian. The wrap around does not affect the connected component analysis

since no two regions with normals 4,_ steradian apart can be adjacent without triggering8x8x4

segmentation in the Gaussian-mean curvature sign map. The sub-regions obtained from the

like-normal neighbourhood map therefore conform to the splitting criterion of equation 5.I.
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Trace_

a. b.

Figure 5.6: a: L-pipe junction which comprises two cylinders merging seamlessly; b: Maximal

acceleration traces along the surface of an L-pipe junction

5.9 Acceleration Band Separation

In the case of cylinders (or cones), it is observed that the maximal acceleration or curvature

vector at each point on that surface will be in the plane of the circular cross-section of the

cylinder or cone at that point. If one were to trace the loci of such vectors at some specified

intervals along the edge of the region, these loci will 'slice' the region into bands.

To make the discussion more concrete, we shall consider the segmentation of a L-pipe junction

shown in figure 5.6a which comprises two cylinders merging seamlessly (chamfering smoothly

at the intersection). The entire junction is represented as a single smooth surface in the initial

segmentation. Figure 5.6b shows the desired result of the operation to split this surface into

sub-regions which satisfy the splitting criterion of equation 5.1. We shall call the segmented

sub-region acceleration bands.

Let the unit maximal acceleration or curvature vector at some point (u, v) on a Monge surface

be a(u, v) = a_ +/3_. The algorithm to obtain the acceleration bands is as follows:

1. Extract the boundary of the smooth surface.
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2. Obtainthesetof boundaryintervalpointsB at regular intervals along boundary.

point ((bi = bluff + bivg) E I3).3. For each

(a) Let ('7 = b); the trace unit t be a point (floor(7_,,7,,)) (denoted floor(_)); the trace

set 7_ associated with the i th member of B be a set with t as its sole member;, and

counter k = i

Co) Set ('7 := _ + 0.5ff(%,, 7_)) and increment k by 1.

(c) If (floor(-y) _ t), set t := floor(-_) and add t to "Ti

(d) If t intersects the region boundary (and (t i_ floor(K))), or k is greater than some

preset threshold, goto 3 else goto 3b.

4. Segment the surface S into bands separated by the set of acceleration traces [T/].

The computation of the maximal acceleration of curvature vector can be accomplished in

three ways:

Principal Directions : We have already observed that the principal curvatures of a surface are

the extrema of the normal curvatures of that surface. The corresponding principal directions

can therefore be applied to the generation of maximal acceleration vectors. Recall that the

principal directions are given by

_l'2 = tan-l ( -B + _/B2 -4AC )2A

where A = (FN - GM); B = (EN - GL) C = (EM - FL) (equation 4.48) From

equation 4.33 and equation 4.38, we can express E, F, G, L, M, N for surface w in terms

of the derivatives of g(u, v) as follows:

E = w_, . wu = l + g_ 2 F = w,, . w_, = l + gug_,

G = wv " wv = l + gv 2
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N - -guff- g_t: + u7
_/gO + g2 + 1

guu
L = w_ •N = --

Inl
gvv

N=w_,v.N=--
tnl

M=wu_.N- guy
Inl

(5.7)

where Int = x/gu 2 + go2 + 1 is the magnitude of the surface normal. By algebraic manip-

ulation, equation 4.48 becomes:

_bl'2=tan-_ ( _/3+x/f12-4c_7)2a (5.s)

where

= [nl(rN - GM) = g,o(1 + gugv) - gu,_(1 + 9v 2)

9 = lnl(EX - GL) = gt,_(1+ gJ) - g_,,(1 + 9o 2)

7 = [n[(EM - FL) = g,,,(1 + g, 2) _ g_,,(1 + g,,9v)

For some angle g,, the normal curvature of a surface in the direction of that angle can be

computed by applying equation 4.44:

L du 2 + 231dudv + N dv 2

E du 2 + 2F du dv + G dv 2

where du = cos(g 0 and dv = sin(S). The principal curvatures corresponding to the

principal directions can thus be computed and the direction corresponding to the maximal

curvature obtained.

Derivatives of Surface Normal ' Another way to look at the direction of maximal surface

acceleration or curvature in terms of the variation in the unit surface normal.

N
-gt, ff - gvff +

Inl
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dN

du

dN

dv

dN dN

1 [_.(g.g_.+g+v)- g..I.I_]_+I,H3

1 [_o(_. +_9_o)- g._l.I_]_+_7

I
[g.(gv_+g_g_)-g._j.I_]_+I,,I3

I

k J

gv9_ + guguv .
W

I-I
i

= _ [g.(g_g.=+gog..+g_g_v+ g.g._)-I,,l: (g.=+g..)]_+
!

_3

I
[_..- I-I_(g_.+_._)]_+- i,_i3

I
[9o_-I.I _(g- +g_)]_+7F

where r/= g_,g_,, + g_g_,, + g_g_ + g_,g_,v.

The direction of maximal change in the unit surface normal in the plane of the Monge

basis is therefore given by:

Fg_v-Inl 2(g_ + g_.__2)]4, tan -1 (5.10)
'Lg.r/ Inl2(g=.+g._)J

This computation has an advantage over the principal directions computation in that it does

not require the computation of both principal directions and the extra step to test for the

direction corresponding to the larger of the principal curvatures.

Derivatives of Gradient • Finally, the direction of maximal surface acceleration or curvature

may be approximated by taking the gradient of the gradient of the surface:

A(_,,) = v(vg(u,,))
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Arcs Sharing a Trace

Figure 5.7: More than one arc may map to the same acceleration trace in the modified region

adjacency graph

= g_,,,ff+g_,,_E (5.11)

5.10

This is not strictly correct in terms of surface acceleration or curvature since it is only the

gradient of change of the maximal velocity vector of the surface, but experiments have

shown that it is a useful approximation.

Modifications to the Region Adjacency Graph

Modifications are necessary in the adjacency relationship when region adjacency graphs

are applied to acceleration bands. The 4-connected or 8-connected neighbourhood criterion

discussed in section 5.2 does not apply because all the sub-regions in the split are separated by

the acceleration traces (see the example for the segmented L-pipe in figure 5.6).

Define the trace-neighbours of an acceleration band to be set of acceleration traces which

are 4 or 8 connected with the band; and, define the band-neighbours of an acceleration trace to

be the set of acceleration bands similarly connected to the trace. We now have a modified region

adjacency graph in which the nodes are the acceleration bands and the arcs are the acceleration

traces. Note that more than one arc in the graph may map to the same acceleration trace as



124

shownin figure5.7.Theoretically,thisshouldnothappensincetheaccelerationtracesmayget

verycloseto eachother,but neveractuallyintersect.In practice,however,tracesarerounded

intothepixelstheyoccupy- andsuchtracemergingsoccur.

5.11 Specifics of Hypothesis Guided Region Merging for Planes and Cylinders

At this point, the operators necessary to perform the hypothesis guided merging of sub-

regions generated by the splitting operations of section 5.6 into constructed surface regions are

discussed. These operators are utilized in step 5 of the algorithm outlined in section 5.5.

Recall that the algorithm is based upon the fitting of companion linear forms of the hy-

pothesized constructed surface to the splitted sub-regions and observing the goodness-of-fit to

determine whether a sub-region ought to be recruited into the constructed surface. We shall now

discuss the companion linear forms for planes, cones and cylinders.

Later it will be shown how these companion linear forms are capable of parameter estimation

of the constructed forms as well.

5.11.1 Companion Linear Form for Planar Regions

Since the planar equation given by:

a + bz + cy = z (5.12)

is a linear function in the form of equation 4.8, the companion linear form is identical to the

constructed form (i.e. it is the plane function).

5.11.2 Companion Linear Form for Cylindrical Regions

The depth function z = f(z, y) for cylinders, however, is a non-linear function in terms of

the angles of inclination and offsets of the cylinder axes. An approximating linear function for
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thesurfaceis required- sucha formis thebiquadraticsurface(equation4.56):

z = a + bz + cy + dzy + ex 2 + fy2

which was analyzed in sections 4.4.2 and 4.4.3

In brief review of our analysis of the biquadratic function, it has been shown that:

• Any horizontal section of the biquadratic function yields a conic section

• The function has two perpendicular principal axes in the x-y plane.

• The function is symmetric around the principal axes.

• When d2 - 4el = 0 (known as the characteristic of the biquadratic form) the function is

a RIDGE region everywhere (therefore it is capable of fitting cylinders).

• The characteristic is invariant under translation and rotation.

It will be shown later, in our discussion of cylinder parameter estimation, that this function is

an approximation (rather than an exact fit) to cylindrical surfaces. It will be shown, however, that

the ratio of the fitting error to the area of the fitted region remains constant and is independent

of the length of the cylinder being fit.



CHAPTER VI

DETERMINING THE POSE OF CYLINDERS

i

Once a region in a scene is known to be a cylindrical surface, the question remains as to

how the pose of that cylinder may be extracted. In this chapter, we shall discuss how the pose

parameters may be estimated using the coefficients of the biquadrafic surface fitted to the region

and how this may be refined by fitting the cylindrical function to the data.

6.1 Biquadratic Properties-Based Cylinder Parameter Estimation

In section 4.4, the properties of the biquadratic function:

z = a + bx + cy + dxy + ex 2 + fy2 equation 4.56

has been discussed in detail. In the previous section, we have seen how this function is applicable

as a companion linear function for hypothesis-based region merging to cylinder regions in a

range image. In this section, we shall see the utility of this function for parameter estimation of

cylinders.

Assume that from the previous matching and split-merge operations, the region in the range

image occupied by a cylinder is known. Assume, too, that the radius of the cylinder is known

from the model. The task now is to place the cylinder in R 3 space.

A cylinder in R 3 space can be wholly determined by the equation of its axis and the radius

of its circular cross section. The task is then to acquire the equation of the cylinder axis.
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6.1.1 Axis Projection on the x-y Plane

The equation of the projection of the axis in the x-y plane may be obtained through the

ensuing analysis.

The partial derivatives of the biquadratic function are:

Oqz

m = b+dy+2ez
Oz

Oz
= c+dx+2fy

Oy

By chain rule, we obtain:

O...ff_y= b + dy + 2ez (6.1)
Oz c + dx + 2fy

In the space of lines parallel to the cylinder axis which lie on the cylinder surface, we enforce

the relation

dy
m = m = constant (6.2)
dz

as a constraint on equation 6.1.

These lines are thus defined from equation 6.1 and equation 6.2, we have:

m(c + dz + 2fy) = b+ dy + 2ez (6.3)

Differentiating expression 6.3 with respect to z, we have:

0m 0m d_c-_x +dm + 2 f y--_z + 2fro = d + 2e

Om
But, as m --. constant, _ _ O.

tion 6.4, we have:

(6.4)

Therefore, applying the constraint of equation 6.2 to equa-

dm + 2 fm 2 = dm + 2e

= +,/'_--. = tanOITS

VI
(6.5)

where 0 is the angle between the projection of the cylinder axis on the x-y plane and the z-axis.
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6.1.2 Test of 'Cylinderness'

From equation 4.63, the principal axes of the biquadratic function are given by:

d
tan20 =

e-f

Applying the trigonometric identity tan 20 = 2tan0 to equation 4.63 and equation 6.5, we have

d = -2v/_ (6.6)

Comparing equation 6.7 with the characteristic of the quadratic form given in equation 4.84 and

table 4.4, it is evident that this relationship indicates that horizontal (z = constant) section of the

function is a parabola and the three-dimensional form is a RIDGE or VALLEY region everywhere.

Equation 6.5 can thus be thought of as a parabolic constraint, forcing the parabolic characteristic

(d 2 - 4ef = 0) on the biquadratic function.

Thus, from equation 6.6 we have

abs [1- abs (_2_)] <_c,ti,m, (6.7)

which constitutes the test if a set of data, fitted by a biquadratic function, forms a cylindrical

surface.

6.1.3 Biquadratics are Only Approximations of Cylinders

Let the coordinate axes be rotated by an angle 0 to coincide with the principal axes. From

equation 4.86, the surface function is described by:

A + Bu + Cv + Eu 2 + Fv 2 = z

where

E = ecos20 + fsin_0 + dsinOcosO (6.8)

F = esin20 + fcos20 - dsinOcosO (6.9)
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"_____Bx + Cy

//

Fv 2

Figure 6.1" Decomposition of the rotated function A + Bu + Cv + Fv 2 = z

Applying the relation tan0 = + _ (equation 6.5), and by trigonometric manipulation, the right

hand side of equation 6.8 reduces to zero. F resolves to

e 2 q_ f2 .+ 4el
F = (6.10)

e+f

The surface function in the rotated coordinate system thus becomes:

A + Bu + Cv + Fv 2 = z (6.11)

The first three terms of equation 6.11 describes a plane. Equation 6.11, therefore, describes

the function Fv 2 = z' summed with a planar surface (see figure 6.1).

By the preceding analysis, it can be seen that the biquadratic surface is only an approximation

of a cylinder, the cross-section of which may be described by z 2 = v2 + r 2, where r is the radius

of the cylinder (see figure 6.2).
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Fv 2 _ Cross-section of

a Cylinder
• _..4,/' Cross-section of

_,.,aB].quadratic Surface

r,'" i -----

." I

v

Figure 6.2: The biquadmtic surface is only an approximation of a cylindrical surface.

This approximation is appropriate, firstly, because the error per unit length of the cylinder

to the fitted biquadratic surface is constant. Hence, the normalized X 2 metric of equation 5.3

holds. Secondly, the error distribution is symmetric around the cylinder axis. This ensures

that the principal axis of the biquadratic function lies on the cylinder axis. Furthermore, in our

discussion of the chapter III and section 5.8, it has been shown that the data is more reliable at

the top of the cylinder (close to the projection of the axis onto the x-y plane). At the edges where

the surface is oblique to the range scanner, the data is less reliable and even appears planar.

6.1.4 Geometric Description

It should be observed from expression 6.5 that a non-imaginary tangent of the cylinder axis

exists only if the coefficients of the square terms of the biquadratic equations have the same

sign. If this is so, then the sign of F in equation 6.11 takes the same sign as e and f (see

equation 6.10), Thus, if e and f are positive, the function describes a trough (the concave inside

of a cylinder) and if they are negative, the function describes a ridge (convex top of a cylinder)

- see figure 6.3.
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Figure6.3:a. Positivevaluesof e and f: The function describes a trough (the concave inside of

a cylinder); b. Negative values of e and f: The function describes a ridge (convex

top of a cylinder)

!if--. i'\-/N-- " _ i_.-_

Figure 6.4: When the axis of the cylinder is parallel with one of the coordinate axes and fitting

errors may give rise to a 'bowing' of the fitted surface away from the cylinder axis

yielding a 'saddle'.
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Y

Princil_l Axes of the
Biquadralic Function

ContouPii o( the

,_i¢luadrllliG Form

Figure 6.5: The principal axes in a saddle biquadratic form

When the signs are different, the limiting two-dimensional form becomes a hyperbola and

the three-dimensional form is a saddle (see table 4.3 and table 4.4). This happens only when

the axis of the cylinder is parallel with one of the coordinate axes and fitting errors give rise

to a 'bowing' of the fitted surface away from the cylinder axis (see figure 6.4). Even in such

situations, the function is symmetrical around principal axes which are perpendicular to each

other (see figure 6.5). The principal axes can still be computed by taking the absolute values

of e and f before applying equation 6.5. Experimentation has shown this to be a very rare

occurrence (it was never observed).

6.1.5 A Solution to the Quadrant Ambiguity

We have already observed that the computation of the principal axes by equation 4.63 and

equation 4.64 that the computation is periodic on 9" The computation of the axis of minimal •

curvature by equation 6.5 is also ambiguous on an interval of 9" A resolution of this ambiguity

is needed. One could compute the normal curvatures of the biquadratic surface for both angles

(9) apart and determine the direction of minimal curvature. Fortunately, this is not necessary.



133

\
\

Figure 6.6: Convex biquadratic function with axis of symmetry passing through the first and

third quadrants

The necessary information can be obtained by simply observing the signs of the coefficients of

the biquadratic function.

Let us first make an observation concerning convex surfaces which satisfy the test of equa-

tion 6.7. We observe that

This says that the rate of change of the u-tangent with respect to v is equal to the rate of change

of the v-tangent with respect to u; and that these rates are a constant equal to the coefficient of

the cross-variable zy term, d.

Consider figure 6.6a of a convex biquadratic function (both e and f are negative). The u-
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d<0

d>0

(e < 0)&(f < 0)

Convex Surface

Quadrants 2,4

tanO < 0

Quadrants 1,3

tanO> 0

(e > 0)&(f > 0)

Concave Surface

Quadrants 1,3

tanO> 0

Quadrants 2,4

tanO < 0

Table 6.1: Summary of the quadrant/gradient analysis for biquadratic functions modeling cylin-
ders and cones.

tangent vectors at points (Zl, Yx), (zl, Y2) and (zl, Y3) are _(z2, Yx), 9_(z2, y_) and 9_(ze, Y3)

respectively. By observation, it is evident that

It is also clear that 9_, increases monotonicly with increasing y. By the same process of obser-

vation, it is evident that the v-tangent vectors 9_(zl,y_), 9_(z2,y2) and 9_(z3, y2) are also a

increasing progression in terms of magnitude. Thus 9,,_, = .q_,,, for this surface configuration with

the cylinder axis in the first and third quadrants is positive; or, the coefficient of the cross-variable

z_/term is greater than zero (d > 0).

By the same analysis, it can be shown for figure 6.6b that a convex biquadratic function

modeling a cylinder with axis inclined in the second and fourth quadrants has negative 9,-, = 9_,_,.

Similarly, for a concave biquadratic function describing the inside surface of a cylinder, (both

e and f are positive). The u-tangent and v-tangent vectors decrease with increasing y and z

respectively when the cylinder axis is inclined in the first and third quadrants; and, the gradient

of change of the u-tangent and v-tangent vectors is positive with respect to y and z respectively.

Table 6.1 summarizes the preceding analysis which applies for cones as well.
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6.1.6 The Algorithm for Axis Determination

Up to this point, we have only discussed how the gradient of the projection of the axis of

the cylinder axis on the x-y plane is estimated. To define a cylinder, the entire line equation of

the axis in three-dimensional space is required along with the radius of the cylinder. As we have

done all along, a hypothesis for the radius of the cylinder is assumed to be available from the

object model. What is required then is the axis description. Since a line in three-dimensions can

be described by the pair of gradient-intercept equations,

(6.13)

These equations describe the projections of the axis on the x-z and x-y planes respectively with

respect to z (see figure 6.7).

What we have to work with are the original data describing the cylinder, an estimate for my

(and 0 = tan-lm_) and the set of coefficients of the biquadratic function which fits the data.

We make the following observations:

• The axis of the cylinder and the 'top' of the cylinder are colinear in the image data space.

• The derivative of the function describing the cross-section of a cylindrical surface is zero

at the top of the cylinder.

• The biquadratic fit is most reliable at the centroid of the data region being fitted.

The algorithm, based upon these observations, for computing the axis equations is as follows:

1. Compute the centroid (zc, yc) of the connected region which has been determined to belong

to the cylinder surface.

2. Rotate the coordinate axes u-v by the inclination of the axis of the cylinder (the.major axis
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zI

Projec_on of lhe-Cvfin_Jer axis'_'_',_"
on the x-z plane

y = rr_x+_
Projection of the Cylinder axi,,

on the x-y plane

Figure 6.7: The three-dimensional description of a cylinder.
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of the biquadratic function or principal axis of maximal curvature) 0 and compute point

(uc, vc) corresponding to (zc, yc) (see figure 6.8).

3. Obtain the function z = f(u, v) for the section of the biquadratic surface generated by

a vertical sectioning plane in the direction of the minor axis (principal axis of minimal

curvature perpendicular to the major axis) passing through the (uc, v_).

4. Compute the maximal (or minimal) point (up, vp) for the sectional function from its first

derivatives.

5. Compute the corresponding maximal/minimal point (zv, Yv) to (up, vp).

6. Compute the y-intercept (% of equation 6.13) from (zv, yp) and m u.

7. Compute the tangent (mz of equation 6.13) of the biquadratic function in the vertical plane

described by y = muz + cu.

8. Compute the peak z value, zv, of the biquadratic function at point (x v, yp) and compute

the z-intercept of the line on the top of the cylinder cz' from (zp, zp) and m_.

9. Compute the intercept of the cylinder axis from cz', _b= tan-ira, and the radius of the

hypothesized cylinder.

6.1.7 Axis Rotation and y-Intercept Computation

Let the centroid of the region occupied by the cylinder in the range image be (z_, yc). By

algebraic manipulation of the rotation formulae (equation 4.61 the centroid of the region in a

coordinate system rotated by 0 from the x-y axis is:

uc = z_cos0+ ycsin0

ve = -zcsin0+ yccos0 (6.14)
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u = u_sectioning plane Cylinder "Top'

Fv 2

Figure 6.8: The cross-sectional function for computing the top of the cylinder.
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It hasbeendeterminedin section4.4.3thatwhenthecoordinateaxesarerotatedto corre-

spondwitha principalaxisof a biquadraticfunction,thecross-variabledropsout andwehave

equation4.87:

A + Bu + Cv + Eu 2 + Fv _ = z

where

a _ a

B = bcos0+csin0

C = ccosO-bsinO

E = ecos2O + fsin2O + dsin0cos0

F = esin:0 + fcos20- dsinOcosO

Along the plane u = uc, the biquadratic function traces the locus:

z = (A + Buc + Euc 2) + Cv + Fv 2

At the extremal point of expression 6.15,

(6.15)

Thus, the peak or trough point of the section occurs at

C

% = u_ vp = - 2"'ff (6.17)

Notice that, vp is independent of uc (equation 6.16). This is to be expected since we have already

shown in section 6.1.3 that the cylinder axis runs parallel to the v-axis.

Having obtained (up, %), one can easily compute the corresponding point in x-y space from

the rotation formulae (equation 4.61).

The y-intercept of the cylinder axis is thus given by:

% = yp - zptanO (6.18)

dz
-- = C + 2Fv = O (6.16)
dv
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Probed;on of the Cyf_,der axe"" :.'L

cfl the x-z plane r"
i
i

/'

ro r

Figure 6.9: Estimation of the projection of the axis onto the x-z plane

6.1.8 Estimation of the Axis Projection Onto x-z Plane

Once the projection of the axis onto the x-y plane has been computed, the task remaining

is to compute the half of the three-dimensional axis description (equation 6.13) which describes

the projection of the axis in the x-z plane. This can be obtained by first computing the equation,

in the x-z plane, of the line at the 'top' of the cylinder (which is parallel to and colinear in the

image data space with the cylinder axis).

This, in turn, can be accomplished from the locus of intersection between the m_z + c_ = y

plane with the biquadratic function. This locus is:

(a + ccu + f cu) +

(b+ crnu + dcu + 2f mvc_)z +

(dmu + e + fmu)z 2 (6.19)

The gradient of z with respect to z may be computed by taking the first derivative of
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equation 6.19, giving:

-" = b+ cmy + d% + 2f rnr% + (din r + e + f rnr2)z
dz

(6.20)

In accordance with the assumption made in section 6.1.6 that the biquadratic fit is most reliable

at the centroid of the data region begin fitted, the gradient m_ is computed at zp (obtained from

(uc, vc)). Thus

m: = b + c m r + d cy + 2 f my cy + (d my + e + f rny2)zp (6.21)

At point (zp, yp), the correspond zp can be ascertained directly from the biquadratic function.

Therefore the z-intercept of the 'top' of the cylinder may be computed as follows:

c_'= zp - m..zp (6.22)

As shown in figure 6.9, z-intercept of the cylinder axis can be computed from cz' by:

i r
cz = c_ (6.23)

COS<_

where the angle of incline of the axis is ¢ = tan -1 m r, and r is the radius of the cylinder.

While this constitutes a second order estimation (it depends on the accuracy of the estimation

of the projection of the axis onto the x-y plane), experiments have demonstrated that there is

sufficient accuracy to permit convergence of the non-linear function fitting of the actual cylinder

function to the data.

6.2 Non-Linear Cylinder Fitting

In section 4.1.5, non-linear parameter estimation was discussed. In this section, the cylinder

will be used as an example of a constructed form for which non-linear fitting is required. In

order to apply the Levenberg-Marquardt algorithm, the analytic expression for the data in the

form: z = f(z, y; a) and its first derivatives with respect to the pose parameters are required.
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Figure 6.10: Rotation of a cylinder with axis colinear to the z-axis.

Consider figure 6.10 of a cylinder with its axis colinear with the z-axis. This cylinder is first

rotated by an angle -q_ from the z-axis in the x-z plane around the y-axis then by an angle 0

around the z-axis; and then it is translated so that the axis projections on the x-y and x-z planes

intersect the z-axis at cy (call this the y-intercept) and cz (call this the z-intercept) respectively.

The transformations are therefore:

[z y z 1]

cos(b) 0 sin(C)) 0

0 1 0 0

-sin(4 ) 0 cos(e,) 0

0 0 0 1

cos(O) sin(O) 0 0

-sin(O) cos(O) 0 0

0 0 1 0

0 0 0 1

i 0 0 0

0 1 0 0

0 0 1 0

0 cy cz 1

(6.24)
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Theseevaluateto thesingletransformationmatrix7":

7"T =

(cos0(zcos¢ - zsin¢) - ysin0)

(sin0(zcos¢ - zsin¢) + ycos0 + %)

(zsin¢ + zcos¢ + c_)

l

(6.25)

The equation of a cylinder with axis on the z-axis is:

z = _- y2 (6.26)

Applying the parameterization to the coordinate system u, v, w, the transformation yields the

system of four equations:

z = cos0(ucos¢ - wsin¢) - vsin0

y = sin0(ucos¢- wsin¢) + vcos0 + cy

z = usin_ + wcos¢ + c_

I/3 = X/_r2 _)2 (6.27)

Eliminating u, v and w from the system, we are left with the form:

Z -"" tan :_-_sO+ cosO -t_'r_7+.i +

(u__-ztanO - c_,cos¢(tan2¢ + 1) r 2 + \cos0(tan20-S/_-]-)) -._ C z (6.28)

Let

,_ = y- xtanO- cu

'7 = tan20 + l

),
,3 = -

7

c_ = tan2¢+l
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Then equation 6.28 becomes

tan¢ tanCtan0 _/ (co_) 2z = zc---_s0 + cosO ;3 + acos¢ r 2 - + cz (6.29)

To compute the Hessian, the first derivatives of equation 6.29 with respect to the parameters

of pose are required. They are given by:

OZ

OO

Oz
m

0¢

= ztanCtan0cos0+ _cos3-'-'_tan¢[A(I+sin20)+tanO(-z-Z3tanO)] +

a;3cosb(z + 2;3tanO - AsinOcosO)

cosOcos2¢ + \ cos¢ osin¢ r_ -

07.
m

Ocu

Oz

Ocz

Oz

Or

1

7cosO

_Zcos¢
- tan¢ tanO

rocos0
(6.30)

In the previous sections, the axis of the cylinder was estimated in terms of the gradients of

z and y with respect to x, mz and my respectively. These estimates can be convened to ¢ and

0 as follows (see figure 6.11):

0 = tan-l(mu)

(-)¢ = tan-1 _/1 + rn_ 2
(6.31 )
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_ m,

I my 2

X m = tan- I mz 2
Y 5x

Figure 6.11: Conversion between gradient notation and 4,-8 notation.



CHAPTER VII

ON THE EXTRACTION OF EDGES FROM RUN-LENGTH

REPRESENTATIONS

7.1 Run Length Regions

In the major portion of the work, data are organized as regions which occupy space in the

imagery. The data format to represent this occupancy is the run-length region (see figure 7.1).

Each region is assigned a list of runs, each of which is a three-tuple: (yi,xl i,x2 i) where y, is

the y coordinate (line number in the image) and xl, and x2, are the start (lowest column index)

and the end (highest column index) of z coordinate values in line yi. We shall designate the k th

region Rk and the i th rtln r i = (yi,xli,x2,). Thus ri in region Rk is the set of pixels:

(7.1)

If region Rk is made up of N runs, then

N

Uri=Nk and rirlrj 7_0 _=_ (i=j) (7.2)
i----1

7.2 Scanning Algorithms for Extracting Region Boundaries

Given a region, the task of computing its boundary may be simply accomplished by generating

a labelled image representation of the region where all points in the image belongs to the region

if and only if its pixel value bears some labelling value. A walking algorithm may then be

applied to trace the boundary of the region. Using the scanning template in figure 7.2, to obtain

146
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Run List

column
x (n)

columt
x (n

(n-L x,(n-l), x (n-l)
2 n-I

(n, x1{n), x2(n)), row r_

(n + !,x (n +I), x (n+ I)), n*2
1 2 n_3

(n+2, x1(n +2), x2(n +2)),

(n, xl(n + 3), xz(n+ 3)),

Figure 7.1: A run-length region representation of spatial occupancy in an image.

3 2 1

4 pcurr 8

5 6 7

Figure 7.2: Scanning template to generate a positively directed boundary
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a positively directed boundary (where the region is always on the left if one walks along the

directed boundary generated), one may begin with any pixel p, at the boundary of the region

and do the following:

1. Set the current boundary point pc,,,.r to Ps. With pcu,r at the center of the template, scan

the pixel's neighbours in the order 1,2,...8 (call this the scanning index) until there is a

transition in the scanned pixel from outside the region to inside the region. (Let s be the

scanning index at the transition point.)

2. Tag pc_, with a unique boundary label b.

3. Set the pc,,,,, to the new boundary position (at the transition point inside the region). Set

s := (s + 5) rnod 8 (where rood is the modulus operator).

4. While the" scanned point is a region point, set s := (s + 1) mod 8. (The desired point is

the transition from non-region to region.)

5. While the scanned point is not a region point and p, has not been reached, set

s := (s + 1) rood 8.

6. If Ps has been reached,

(a) Scan the image for an untagged boundary point.

(b) If a point is found, Set p, to this point (This will take care of holes in the region)

and goto step 2; else exit the boundary tracing algorithm.

7. Goto step 2

This algorithm may be extended to operate directly on the list of runs by ordering the runs

by the !/index and considering only the runs 4-1 line from the current boundary point. A lot

of extra bookkeeping would have to be implemented to label traversed pixels and the runs will

have to be searched for each pixel being scanned by the scanning template.
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7.3 Finite State Machine Approach to Boundary Extraction

In the scanning algorithm in which an image array is used, for each region, the image has to

be labelled (and cleared if labels are to be reused), for each pixel in the boundary, the average

scanning performed is 4 pixels, and for each hole, an average of half the region has to be

scanned to find the hole. Thus for a region of M pixels, K boundary points and H holes, the

number of operations is O(4K + 2M + HM). In the modified algorithm which does not use

an image array, the array needs not be updated. However, if there is an average of R runs per

line the number of operations becomes O(4KR + II M ) excluding the considerable bookkeeping

necessary. Neither of these algorithm exploits the information contained in the topology of the

run list and the constraints introduced by direction of the boundary.

In this section, a finite state machine based algorithm which takes advantage of the run list

topology and the boundary direction constraints is presented.
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Up-Right

Down -Left

' Down_Right_.-

t

Figure 7.3: Boundary segment labels for a positively directed boundary.

7.3.1 The States

Observe that for positively directed region boundary, segments can be grouped into four

forms (see figure 7.3):

Up-Right : Where the boundary is moving up and/or right with the region above and/or to the

left of the undirected boundary points.

Down-Left : Where the boundary is moving down and/or left with the region beneath and/or

to the right of the undirected boundary points.

Down-Right : Where the boundary is moving down and/or right with the region above and/or

to the right of the undirected boundary points.

Up-Left : Where the boundary is moving up and/or left with the region beneath and/or to the

left of the undirected boundary points.

These segment types constitute the states of our finite state machine. Let the positively

directed region boundary comprise the ordered boundary segments {bl, b2,..., bN}. State tran-

sitions occur for each move from one segment to the next consecutive segment.
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7.3.2 State Transitions

In the computation Of the boundary of some region :Rk, let pc,,.,, be the current point on

the boundary; Rc,,,., be the current run; and R,,_ be the next run in a positively directed 'trek'

around the boundary.

Let

_(,_)

7e(n)_(p), _(n)r(p)

_(n)l(R_), T_(n)_(R,)

rtea, r,.isat

line(r)

denote the set of runs in _k on line n

denote the subsets of _(n) to the left and right of point

p respectively.

denote the subset of _(n) completely to the left and right

of run Rc respectively.

denote the leftmost and rightmost points of run r respec-

tively.

denote the x (column) value of point p.

denote the y (line or row) value of run r.

Define, also, the following predicates:

IN(p, Tt) which searches a set of runs _ for a run r such that

z(rt,,a) < z(p) < x(r,/sht). The function returns r if it is found,

else NIL is returned.

2tta (_, r) which searches a set of runs 7"¢.for a leftmost run A which sat-

isfies the condition: x(rl, a) < x(._te#) < x(rright). The function

returns A if it is found, else NIL is returned.

2"right(R, r) which searches a set of runs R. for a rightmost run A which sat-

isfies the condition: z(rtea) < T,(/_righl) < X(rri&ht)* The function

returns A if it is found, else NIL is returned.
Finally, we define the 'walking' function:

WALK (n, It, r, end)
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which adds points to the boundary list moving from point p toward the specified end point of

run r (end may be either left or right designating rle.n or r,;ght respectively.) such that:

• All the points are on line n except for the final point which will be the specified end point

of run r. Run r will always be 4-i line from n.

• If p is on line n, the set of points added to the boundary includes point p as the first point,

else p is excluded (it would have been added in the previous state transition).

• If r is not on line n, r,,,a (i.e. rt,l_ or rrisht) is appended to the boundary list.

At the end of the WALK, r is tagged as being <left-used> or <right-used> with end

being left or right respectively. Note that the direction of walk (left or right) is not specified. The

walk is leftward (decreasing column index) if (z(p) > re_) and rightward (increasing column

index) if (z(p) < r,,,u).

For example, WALK (i, pc_,,, R,_=, right ) does the following:

1. Add point (z(pc_,,),i) to the boundary list if pc,,,_ is not on line i.

2. Add points

(z(pc_,,) + 1,i),(z(pc_,) + 2, i),... ,(z((R._)right), i)

to the boundary list.

3. Tag R,,Lxt as being <right-used>.

4. Set pcur,,; := (Rnoj)risht

Figure 7.4 is the transition table making use of these operations to generate a closed bound-

ary (for readability, P_, is written Rc and Pc,,,, is written simply as p when they appear as

subscripts). The rows of the transition table represent the FROM states while the columns are

the target TO states. Each transition box in the table has one or more figures showing the run
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configuration. The horizontal lines in these figures represent the runs in the region with the solid

black run being the current run /_,,,.,. The current point beforethe transition is marked by the

'e' on Rcu,_. Each transition box also contains one or two sets of 'Test-Operation' pairs. Each

Test contains two predicates which are performed sequentially to specify a decision tree. For

example, from state Up-Right, if the test IN(pc,,,,.,_(i- 1)) evaluates to TRUE (retuming a

run R,,,_), Down-Left and Up-Left are eliminated as possible target states. The second test:

Ztel_(_(i),.(Re), R_ra ) selects the TO state from between Up-Right and Down-Right. It will also

be noticed that some tests lead to ambiguous TO states. This is not a problem because the rows

1 and 4 are identical in Test and Operation as are rows 2 and 3. The ambiguities in rows

1 and 4 are in columns 2 and 3 and the ambiguities of row 2 and 3 are in columns 1 and 4.

The ambiguity is resolved in subsequent transitions. The transition table, therefore specifies a

finite state machine with _-moves[96, 120]. For example, from state Up-Right, satisfying the

test of condition 2 yields two possible target states: Down-Left and Down-Right. From states

Down-Left and Down-Right, however, all the tests and operations are identical and there is no

ambiguity between Down-Left and Down-Right as TO states - thereby resolving the ambiguity.

7.3.3 The Algorithm

Given a starting point, the finite state machine in _figure 7.4 will generate a closed positively

directed boundary. This has to be repeated for all the holes which may exist in the region.

Holes are located after each closed boundary is found by searching for unused ends of runs. The

algorithm follows:

1. Organize the runs into an array of run lists indexed by line number and ordered from left

to right.

2. Set up for external boundary: Set STATE := DOWN-LEFT; Pc,,,., to the left end of the

top left run; and ps,,,n = pc,,,.r. Tag the left end of the top left run as <u_od>.
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• Runs on the same line

• ordered from left to right

Line Indices • / I _ _

_',O ---'-_ • • •

O-'-'-n__ • • •

Oi

OI

OI

Figure 7.5: Organization of the region run lists for boundary extraction

3. Extract the external boundary:

Loop

Apply the finite state machine for one state transition.

UNTIL pc,,,, = pstatt

4. Proceed to operate on holes:

Loop while there are <unusad> ends

(a) Set up for each hole: Set STATE := UP-RIGHT;

(b)

pcurr tO the top left

<unusad> end (of some run); and p,,,,,t = pcwr. Tag the top-left <unused>

end as <used>.

Loop

Apply the finite state machine for one state transition.

UNTIL Pcurr = psta,t

LOop end



CHAPTER VIII

EXPERIMENTAL RESULTS

This chapter sets forth the experiments performed in the course of this work. The discussion

is arranged in three sections. The first details the apparatus employed; the second profiles the

experimental procedure; and, the third describes the results of the experiments performed.

8.1 The Experimental Apparatus

The experimental apparatus comprises range sensors, computing hardware and the software

tools. Each of these will be discussed in turn.

8.1.1 Sensor Hardware

Data obtained from two laser range sensors developed by the Environmental Research Institute

of Michigan are analysed in the course of this work. The first is the Intelligent Task Automation

sensor[156] (henceforth referred to as the ERIM/ITA scanner). The data available from this

scanner is in the angle-angle-range format and the software does not exist to extract true Cartesian

(x-y-z) readings from it. Data from the ERIMI1TA scanner are used to illustrate the robustness

and generality of the curvature-based analysis. The rest of the data are obtained using the second

sensor developed for the United States Postal Service[70, 141, 146] (henceforth referred to as

the ERIM/USPS scanner). Software exists to convert the native angle-angle-range readings from

this scanner into true Cartesian (x-y-z) form. Most of the experimental work is performed with

156
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dataobtainedfromthisscanner.Theensuingdiscussionpertainsspecificallyto theERIM/USPS

scanneralthoughtheERIM/ITAscanneroperatesunderthesameprinciplesandpossessessimilar

geometry(albeitwithdifferentparameters).

TheERIM/USPSscanneroperatesundertwo scanningmodes- staticanddynamic.In the

staticmode,thescannersweepsout asolidanglein thesamefashionastheelectrongunin a

televisionpicturetube.Thisproducesanimageinwhicheachpixelis addressedby theangleof

sweep(rowandcolumn)andthevalueof thepixeldescribestherange or distance to a surface

in the target image at that point. In dynamic mode, one axis of scan is removed yielding a single

line scan. A conveyer belt then draws the objects to be scanned across this scan line in the

target area. Since the experiments employ the scanner in the static mode alone, dynamic mode

operation will not be discussed.

Sensing Mechanism

The ERIM/USPS scanner is a three-dimensional 'active' laser ranging sensor. A beam of

sinusoidally amplitude modulated laser light irradiates each element of a target scene. The laser

radiation which originates in a laser diode, is collimated by the Transmit Optical System into a

narrow beam, and is directed at the target area by a scanning mechanism. The return signal from

the laser radiation bouncing off the target is detected by the scanner's Receiver System which

comprises the "scanner, Receiver Optical System, Detector Diode, Digital Phase Detector and

the Logarithmic Amplifier with its analog-to-digital (A/D) Converter."[70] (see figure 8.1). In the

figure, 700 MHz is the operating frequency of the scanner in static mode and in dynamic mode,

the modulating frequency is 280 MHz. The Receiver Optical System is essentially a telescope

whose field of view is synchronized with the scanning beam by the scanning mechanism. It

directs the reflected laser radiation onto a photosensitive detector diode, generating a electric

signal (at point X of figure 8.1) which is modulated by the amplitude and frequency of the
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Figure 8.1: Simplified block diagram of the ERIM/USPS 3D scanner (from Configuration de-
scription for ERIM/USPS range sensor - dynamic and static modes, ERIM, Ann
Arbor, Michigan, 1989.)

reflected radiation. The phase difference between the sinusoidal component (at 700 MHz in

static mode) of the reflected signal and the modulating signal of the incident beam (which serves

as the reference signal) is thus a function of the distance covered by the laser beam to the target

point. The Digital Phase Detector measures the time difference between the positive-going zero-

crossing of the reference signal and that of the reference signal, generating a 12-bit digital range

measure. The circuitry beginning with the preamplifier B in the figure extracts a measure of the

reflectivity of the target surface. This will not be discussed as the reflectance data are not used.

Phase Measurement

The time taken for the scanning beam to make the round trip from the scanner to the target

and back is given by:

At = 2 Rsecs.
C

where R is the distance between the scanner and the target and c is the speed of light in air

(1.1807 x 101° inches/second at 15° and 76 cm Hg) - see figure 8.2. This yields a phase shih of

A¢ = 2xf _t = 41rfRradians (8.1)
¢
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Reference Signal

_At [ Phase Difference
= 2 ,"rf.._t

_--__ Received Signal

/

Figure 8.2: Phase relation between the reference signal and the received signal (from Configu-

ration description for ERIM/USPS range sensor - dynamic and static modes, ERIM,

Ann Arbor, Michigan, 1989.)

where f is the modulation frequency in hertz.

Ambiguity Interval

In equation 8.1, A_b is periodic on 2r. When the phase difference between the reference and

reflected laser signals is coincident, the phase shift is zero. This occurs at integral intervals of

2_" radians. This constitutes the ambiguity interval of the sensor which is given by substituting

/k_b = 2_" into equation 8.1, yielding:

R = & (8.2)
2/

At a modulating frequency of 700 MI-Iz, the ambiguity interval is

1.1807 x 101°
R = = 8.434in.

2 x 700 x i0s

The range readings, hence, wrap around at intervals of 8.434 in. (see figure 8.3).

According to the specification detailed thus far, the sensor should have a range resolution

of 8.434/212 = 2.06 x 10 -3 inches. In practice, though, the instabilities in the radio-frequency

circuitry and other noise restrict current capability of the sensor to an effective eight bits of useful

range information.
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Figure 8.3: The digital phase detector response showing the sensor's range ambiguity interval

(from Configuration description for ERIM/USPS range sensor - dynamic and static

modes, ERIM, Ann Arbor, Michigan, 1989.)

Sensor Geometry

In static mode, the ERIM/USPS scanner employs a scanning regimen which performs 320

sweeps (line scans) across the target area. During each sweep 320 readings are taken, yielding

a 320x320 range image. This covers volume of 8.434 inches x 35 ° x 35 ° at a 32 inch stand-

off (see figure 8.4). The table detailing the ERIM/USPS scanner's static mode parameters is

reproduced in table 8.1.

The horizontal line scan is generated by a rotating 8-sided polygonal mirror and the vertical

scan is produced by use of nodding mirror (see figure 8.5).

We now reproduce the equations for calculating Cartesian x-y-z data from the raw range data

from [70]. Given the sensed distance from the nodding mirror to the target R, the polygon angle

(reflecting beam angle) Or,, and the nodding mirror angle 0, (see figure 8.6). The 'true' polygon

angle is given by:

0r, + 39.11
OP' = 2
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Figure 8.4: ERIM/UsPsThefield of vieWrangeOfsensortheERIM/UsPS 3D scanner ffrorn Configuration description for

1989.) - dynamic and static modes, ERIM, Ann Arbor, Michigan,
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Linesperimage 320

Pixelsperline 320

Beginningnodangle -17.8797" + 0.5*

Nodding angle increment 0.100448*

Beginning polygon angle -14.76" + 0.5*

Polygon angle increment 0.09*

Height above table 32.3542 4- 0.25inches

Inches per range count 8.434/4096

Nadir line 164

Nadir pixel 180

Constant offset 12", 12", 12"

N.B. The height of the sensor is calculated from nadir, where the beam has the shortest distance

to the table. Transformed data is still ordered as it was scanned: the pixels in each scanline of

increasing polygon angle and the scanlines in each image of increasing nodding mirror angle.

Constant offsets were added to insure that all data were positive.

Table 8.1: Parameters of the ERIM/USPS 3D laser range scanner (from Con]iguration descrip-

tion for ERIM/USPS range sensor - dynamic and static modes, ERIM, Ann Arbor,

Michigan, 1989.)
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USPS SCANNER OPTICAL ARRANGEMENT

ROTATING POLYGONAL MIRROR

NOOOING MIRROR

MOTOR

RECEIVE LE_S (2)

j RECEIVE FILTER (2)

j OICHROIC £EAMSPLITTER

NOOOING MIRROR

Figure 8.5: The optical arrangement of the ERIM]USPS 3D scanner (from Configuration desckip-
tion for ERIM/USPS range sensor - dynamic and static modes, ERIM, Ann Arbor,

Michigan, 1989.)
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@p\
\

\

\

\

320 Pixels

Figure 8.6: Geometric model for extracting Cartesian x-y-z data from a range image. (from

Configuration description for ERIM/USPS range sensor - dynamic and static modes,

ERIM, Ann Arbor, Michigan, 1989.)
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Thecoordinatesof thebeamon thepolygonare:

1.4176

Xp = tan(a°-ee')0.813+ cos(8_')

1 + tan(9o-op')

Yp = 0.813Xp- 1.4176

The Y-coordinate of the beam on the nodding mirror is given by:

Y. = (7.5 - x,)tan(0,) + Yp

The Cartesian coordinates of the target point (XT, YT, ZT) are given by:

S T = Rcos(Op)sin(0,_)

YT = Rsin(0p) + Y,_

Zr = Rcos(0p)cos(0,,) (8.3)

The ZT values are subtracted from a constant offset to obtain a 'height' reading.

8.1.2 Computing Architecture

Three computers were utilized in the work. The ERIM High-Speed Cytocomputer [69] drives

the ERIM/USPS scanner and extracts images in the raw-sensor format. A Silicon Graphics

workstation serves both as the three-dimensional display engine and the Unix host, on which

most of the numeric computation takes place. A Symbolics Lisp workstation serves as the

hypothesis generation engine. Most of the two-dimensional region-based image processing and

display operations are also implemented on the Symbolics workstation.

During hypothesis generation and testing, the Symbolics workstation spawns a task on the

Silicon Graphics workstation via a Telnet pipe. This pipe allows processes on the Symbolics

machine to activate telnet sessions on other machines. From the Silicon Graphics end of the

pipe, all that the operating system sees is a telnet session. The Symbolics end of the pipe is an

object which takes input strings and waits for one of a set of events (return sub-strings from the



166

Unix station). Procedures (which include reading the return stream, executing code etc.) may be

attached to the return events. The main task performed on the Silicon Graphics workstation in this

mode is the fitting of three-dimensional functions to specified regions of the three-dimensional

imagery.

8.1.3 Software Tools

The software tools employed in the course of the experiments are:

• Range-angle-angle to x-y-z processing software - This is a C program which transforms

the raw sensor image in native sensor coordinates to Cartesian x-y-z coordinates. This

program implements the transformation of equation 8.3. The raw sensor data takes the

form of two byte-arrays (high and low range bytes) and the output generated are six byte-

arrays (z, _t,z high and low byte). The resulting image scale is 0.001 inch per range count.

The three pairs of images are registered such that for an image coordinate pair (i,j), the

corresponding three-dimensional point is

(O.O01(256HI-X(i,j) + LO-X(i,j)),

O.O01(256HI-Y(i,j) + LO-Y(i,j)),

O.O01(256HI-Z(i,j) + LO-Z(i,j)))

where HI-X and LO-X, HI-Y and LO-Y, and HI-Z and LO-Z are the high and low z, ?/and

z byte arrays respectively.

• Besl/Jain variable order segmenter - This is the set of C programs implemented by Paul

Besl to perform the segmentation algorithms[22, 25, 26] described in section 4.2.

• Variable order segmentation output to Lisp translation - This is a C program that translates
the output of the previous program into a run-length region-based Lisp descriptor. An
example of the output is as follows:

(defregion

(type Biquartic)
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(state 4)

(coefficientl 2694628.250000 -6355.307129 -72538.210938

93.375771 38.125397 741.379578

-0.417259 -0.433377 -0.073706

-3.402546 0.000272 0.001246

0.000571 0.000113 0.005910)

(area 428)

(top-left 62 134)

(bottom-right 101 149)

(runs

(134 76 81) (135 73 87) (136 62 64) (136 73 86) (137 62 64)

(137 67 83) (137 95 101) (138 63 64) (138 67 83) (138 95 101)

(139 63 87) (139 95 101) (140 64 88) (140 92 92) (140 94 101)

(141 64 I01) (142 63 100) (143 63 100) (144 65 99) (145 65 98)

(146 65 95) (147 69 94) (148 70 90) (149 74 75) (149 79 81)

(149 84 86) (149 89 90)))

The descriptor details the order of polynomial fit performed, the coefficients obtained from

the fitting, the area (in pixels) of the region in the image, the right rectangular bounding

box of the region (in terms of the top-left and bottom-right coordinates), and the (row start-

column end-column) description of the run-length regions. All the C and Lisp programs

are capable of reading this data format.

• Lisp-based hypothesis engine - This is the bulk of the code written in the course of this

work. The entire system is object-oriented using Symbolics Lisp Flavors. Each surface

is an object and all the algorithms described in this thesis not implemented in the C code

described in this section are implemented in Lisp on the Symbolics.

• C program for remote fitting - This is an interactive C program which takes as input

region descriptors from the standard Unix input. It fits these regions as specified (e.g. "fit

a biquadratic surface to a particular region in an x-y-z image set") and reports the results

at the standard Unix output. This program is invoked in a telnet session on the Silicon

Graphics workstation from the Symbolics Lisp workstation using a Telnet pipe described

earlier in this chapter. The numeric fitting routines from the Numerical Recipes Library

by Press et. al[140] were modified to operate on bivariate functions for this program.

The objects which this program is capable of fitting are: polynomial surface up to and

including the fourth order Coiquartics), cylinders and straight lines in three dimensional
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space.Singular value decomposition is employed for the polynomial and line fits and

cylinders are fitted using the Levenberg-Marquardt method for parameter estimation of

non-linear forms.

• C program for scene regeneration - This program takes Lisp region descriptor files gen-

erated either by the C fitting program or the Lisp programs and produces x-y-z high and

low byte three-dimensional images for display purposes.

• Graphics display/plotting program - The three dimensional perspective images in this dis-
i

sertation are generated by a Silicon Graphics C program which plots the three-dimensional

x-y-z surfaces to the Silicon Graphics screen. It assumes all adjacent data points to be con-

nected as a surface and connects them to form surfaces. The screen images were oriented

by hand and the screen buffers were saved as the byte images which appear in this chapter.

The two-dimensional region-images were generated from state-labelled byte-images by a

hatching program.

8.2 Experimental Sequence

This section overviews the sequence of experiments performed in the course of this work in

two parts. The sequence in which the processing took place will be discussed followed by an

overview of the data-sets processed.

8.2.1 Sequence of Processing

The processing took place in the sequence which conforms to the sequence of abstraction

discussed in section 3.4 and diagrammed in figure 3.4. The sequence is as follows:

1. The ERIM/USPS scanner was run and the resulting range images were processed to obtain

the Cartesian x-y-z image arrays.
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2. Theuppereightbitsof thetwo-bytez image were extracted to form a byte-image. This

is the input data format to the variable-order segmentation code described earlier. The

output of this program is a set of smooth surface patches along with the coefficients of the

polynomial surfaces which were fit to the patches. (The ERIM/ITA was already in byte-

image format and were processed as-is). The patches were then translated to Lisp-form

region descriptors.

3. The Lisp-form region descriptors were transferred to the Symbolics for the hypothesis

generation and verification process to identify the geometric forms represented by the

regions. The first computation performed in this process was the extraction of the Gaussian

and mean curvature-based signatures from the polynomial descriptors as discussed.

4. Extraction of planar surfaces

• If entire region has a 'FLAT' curvature signature, a plane surface was fitted to the

three-dimensional data.

• If not, the split-merge operation to extract planar surfaces was employed.

5. Extraction of cylindrical surfaces

• If the surface satisfied the initial curvature-based analysis as cylindrical

(a) A biquadratic surface was fitted to the three-dimensional data for cylinder pa-

rameter hypothesis

(b) If the biquadratic fit satisfied the 'Cylindemess' test, the non-linear cylinder fit

was performed on to the surface.

• If the surface failed the initial curvature-based analysis as cylindrical or if a bi-

quadratic fit to the surface failed the 'Cylindemess' test,

(a) The split-merge operation to extract cylindrical surfaces one at the time (by

performing biquadratic fits) was performed.
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(b) Thecylinderparameterswereestimatedfromthecoefficientsof thebiquadratic

surface.

(c) Thenon-linearcylinderfit wasperformedon thethree-dimensionaldata

8.2.2 Progression of Difficulty

A set of experiments designed along a progression of increasing difficulty was performed.

These are listed here and described in greater detail in the next section.

1. Curvature signature extraction of angle-angle-range range imagery of unknown x-y-z geom-

etry. Two images from a library of ERIMATA were processed to obtain smooth polynomial

surface patches and Gaussian and mean surface curvature signatures. This demonstrates

the robustness of these algorithms for images for which a true Cartesian transformation is

not available. The images were those of:

(a) a coffee cup

Co) a space shuttle model

2. Synthetic oriented cylinder images - In this set of experiments, biquadratic surfaces are

fitted to synthetically generated oriented cylinders to gauge the accuracy of the estimation

of the axis projection of the cylinders from the polynomial coefficients.

3. Image of blocks - This is an ERIM/USPS scanner image of a collection of block (all the

surfaces are planar).

4. Image of a soft drink can - This is an ERIM/USPS scanner image of a soft drink can

against a fiat background.

5. Image of cylinders - This is an ERIM/USPS scanner image of two cylindrical objects (a

cylinder and a soft drink can).
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6. Image of blocks and cylinders - This is an ERIMAJSPS scanner image of a mixture of

blocks and cylindrical objects.

7. Image ofa chamfered plane - This is an ERIM/USPS scanner image of an surface made up

of a plane merging smoothly into a curved chamfer. To extract the parametric description

of the plane, the merge-split algorithm for planar surface recovery was applied.

8. Image of a bent pipe elbow - This is an ERIM/USPS scanner image of a bent fiberglass

pipe comprising two straight cylindrical pipe segments merging together with a gradual

135 ° bend. To extract the parametric description of the two cylinders, the merge-split

algorithm for cylindrical surface recovery was applied. The image is much noisier than

the preceding ones because of the fiberglass material is translucent to the laser radiation

and has specular characteristics.

9. Image of a PVC pipe ring - This is an ERIM/USPS scanner image of a ring made up of

four straight PVC pipe segments and four 90 ° PVC pipe elbows.

8.3 The Experiments

In the following experiments, when Gaussian and mean curvature sign-maps are displayed,

the look-up table shown in figure 8.7 applies.

8.3.1 Curvature signature extraction of angle-angle-range range imagery of unknown x-y-z

geometry.

This is a set of two experiments in which the Gaussian and mean curvature sign-maps were

computed from images in the ERIM/ITA scanner's native coordinate system. Comparisons are

made between the curvature sign-maps computed using the 7 x 7 kernel digital differentiation

operators described in section 4.3.3 and the computation obtained from analytical computation

using polynomial descriptors obtained by variable-order segmentation.
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H<0

H:0

H>0

K>O K:O K<O

PEAK RIDGE

NONE FLAT

VALLEY

SADDLE
RIDGE

SURFACE

SADDLE
VALLEY

Figure 8.7: Look-up table for Gaussian and mean curvature sign-map displays

This demonstrates the assertion that sense can be made out of the curvature sign maps which

are computed on faithful smooth surface fits on images. This is true even when the images are

in the native coordinate system of a scanner (which is conformally warped with respect to the

scene's Cartesian dimensions).

Coffee cup

Figure 8.8 shows the 128 x 128 ERIM/ITA scanner image of the coffee cup. The display

color map was randomized around to accentuate the elevation contours.

Figure 8.9 shows the curvature sign-maps computed using the 7 x 7 kernel operator. Although

the cylindrical surface of the coffee cup was by and large labelled as a RIDGE region, the labelling

is very noisy. Furthermore, as will be evident later, this was the best segmentation result obtained

by the kernel operators among all the images on which the algorithm was run.

Figure 8.I0 shows the curvature sign-maps computed from the polynomial descriptors ob-

tained by variable-order segmentation. As discussed, the main cylindrical face of the cup was

segmented into a central RIDGE region flanked by FLAT regions. This constitutes the curvature
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Figure8.8:ERIM/ITAscannerimageof thecoffeecup

Figure8.9: Curvature sign-map of the coffee cup obtained using kernel operators
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Figure8.10:Curvaturesign-mapof thecoffeecup computed from the polynomial descriptors

extracted by variable-order segmentation

sign-map signature of such surfaces. The far-side of the lip of the cup was labelled as RIDGE

and the inside of the cup was segmented into a VALLEY region flanked by FLAT regions. At

the boundary between the RIDGE region describing the lip of the cup and the VALLEY region

inside, was labelled as FLAT (as would be expected). The background plane was greyed (not

hatched) to make it easier to see the labelling on the cup.

Space shuttle model

Figure 8.11 shows the 200 x 200 ERIM/ITA scanner image of a model of the space shuttle

with the background plane removed. As before, a randomized display color map was used.

Figure 8.12 shows the curvature sign-maps computed using the 7 x 7 kernel operators. It

is difficult to make sense of the labelling generated. No planar region, for example was found

on the wings or the tail. The digital noise made the kernel-based computation of the surface

derivatives unstable.
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Figure8.11"ERIM/ITAscannerimageof a modelof thespaceshuttle

Figure 8.12: Curvature sign-map of the space shuttle model obtained using kernel operators
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Figure 8.13: Curvature sign-map of the space shuttle model obtained from the polynomial de-

scriptors extracted by variable-order segmentation

Figure 8.13 shows the curvature sign-maps computed from the polynomial descriptors ob-

tained by variable-order segmentation. As can be seen, both wings and the tail were labelled as

FLAT. Both engines were labelled as RIDGE flanked by FLAT regions, and the main portion of

the fuselage was correctly labelled as RIDGE. The trough in from of the tail was identified as

FLAT, and the boundary region between the tail and the engine was labelled as VALLEY.

8.3.2 Synthetic oriented cylinder images

This is a set of two experiments involving synthetically generated cylinders. The purpose

of these experiments was to verify the reliability of the cylinder-axis estimates generated by

biquadratic functions fitted to the data. To test if there is some comer of the parameter space for

which the estimation fails, the cylinders were generated in an assortment of orientations.

In the first experiment, horizontal cylinders of radius 2.5 inches were generated at intervals



177

of r/18 radians(10"). Biquadraticsurfaceswerefittedto theCylindersandtheorientationof

thecylinderaxeswereestimatedfrom thebiquadraticcoefficients.In table8.2,theanglesof

rotationat whichtheimagesweregeneratedweretabulatedagainsttheestimatedanglesandthe

differencebetweentheangles.Eventhoughtheimageswerecreatedwith 10%Gaussiannoise

content,thelargestestimationerrorwas0.35° at anorientationof 90°. Apartfromthe90° and

-90" orientations, the average absolute error was 0.0061".

In the second synthetic images experiment, tilted cylinders of radius 2.5 inches were

generated at orientations (0) of -50", -30% 30 °, and 60 ° . The cylinders were tilted at

_b = -50°,-30°,30°,50 ° from the horizontal plane. Gaussian noise of 10% was added to

the images. As before, biquadratic surfaces were fitted to the cylinders and the orientation of the

cylinder axes were estimated from the biquadratic coefficients. In table 8.3, the angle of rotation

at which the images were generated are tabulated against the estimated angles, the difference

between the angles and the angles of tilt. The average absolute estimation error for the entire set

was 0.0103 °. The average absolute estimation error for the + 30" tilted cylinders was 0.007 °,

and that for the -1-50 ° tilted cylinders was 0.0135 °. Although the errors for the tilted cylinders

were higher than those for horizontal cylinders, and the average error for cylinders tilted at + 50 °

was nearly double that for cylinders tilted at ± 30 °, the errors in each case was still much smaller

than that which would be expected with real sensing errors.

8.3.3 Image of blocks

In this experiment, a collection of four blocks (card-board boxes and wooden blocks) were

imaged and processed to extract the surfaces and their orientations. Figure 8.14 is a rendered

perspective image of the three-dimensional data obtained from the ERIM/USPS scanner. Notice

how noisy the data is especially at the edges of the blocks. As discussed in chapter III, two

kinds of errors are evident at these edges. First there are the many obvious spikes which result
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0 O_tlmate Oestitnatt-- 0

-90.000000 -89.668674 0.331326

-80.001886 -80.025356 -0.023470

-70.003773 -70.000170 0.003602

-59.977011 -59.981953 -0.004942

-50.007545 -50.008177 -0.000632

-39.992455 -39.997938 -0.005483

-30.022989 -30.019435 0.003554

-19.996227 -19.996967 -0.000739

-9.998114 -10.000909 -0.002795

0.000000 0.000000 0.000000

9.998114 9.975731 -0.022382

19.996227 20.000198 0.003971

30.022989 30.020099 -0.002890

39.992455 39.992506 0.000052

50.007545 50.003306 -0.004240

59.999929 60.011458 0.011528

69.998043 69.987020 -0.011024

80.001886 80.003907 0.00202 1

90.000000 89.649351 -0.350649

Table 8.2: Cylinder axis estimation of synthetically generated oriented horizontal cylinders
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0 Oestimate O_ti,,_¢ - 0

-50.007545 -50.009619 -0.002073

-30.022989

30.022989

59.999929

-49.994922 0.012623

-50.019174 -0.011629

-50.003515 0.004030

-30.015716 0.007273

-30.050071 -0.027082

-30.025689 -0.002700

-30.012940 0.010049

30.007681 -0.015308

30.015209 -0.007780

30.019095 -0.003894

30.009739 -0.013250

60.009064 0.009135

59.984119 -0.015810

59.004112 0.004182

60.017500 0.017571

-30

-50

30

5O

-30

-50

30

5O

-30

-50

30

5O

-30

-50

30

5O

Table 8.3: Cylinder axis estimation of synthetically generated oriented tilted cylinders
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Figure8.14:A renderedperspectiveviewof thethree-dimensionalimageof theblocks

frombeamscatterto thesharpedges(seefigure3.1)andsecond,thereis theaveragingnoise

whichmakesthedataattheedgeslooklike corrugatedslopes(seefigure3.2).

Figure8.15showsthecurvaturesign-mapscomputedusingthe7x 7kerneloperators.Again,

thedigitalnoiserenderedthekemel-basedcomputationof thesurfacederivativesineffectual.No

planarregions,for examplewerefoundon theblocksurfaces.

Figure8.16showsthesmoothregions found by the variable-order segmentation program

and figure 8.17 shows the order of the bivariate polynomials fitted to the various surfaces.

Figure 8.18 shows the curvature sign-maps computed from the polynomial descriptors ob-

tained by variable-order segmentation. As can be seen, the majority of the block faces were

labelled as FLAT. The little block on the left was erroneously labelled as RIDGE because the

region was too small to obtain an extended region. The edges of one of the block faces near the

top were labelled as a FLAT region flanked by a RIDGE and a VALLFy region. Although the

background was found to be FLAT it was blacked-out in figure 8.18 to make it easier to see the

blocks.
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Figure8.15:.Curvaturesign-mapof theimageof blocksobtainedusingkerneloperators

Figure 8.16: Labelled image of smooth surfaces found in the blocks image by the variable-order

segmentation program
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Figure8.17:Thebivariatepolynomialsfittedto thesmoothsurfacesin theblocksimageby the
variable-order segmentation program. KEY: Horizontal lines-Planar; Vertical

lines-Bicubic; Crossed '+' hatching-Biquartic

Figure 8.18: Curvature sign-map of the blocks image obtained from the polynomial descriptors

extracted by variable-order segmentation
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Figure 8.19: A rendered perspective view of the three-dimensional surfaces found in the blocks

image

Figure 8.19 is a rendered perspective image of the three-dimensional surfaces found in the

blocks image after the hypothesis-verification operation. The angle between the faces of the

tilted box at the top of the image was found to be 92.5 °. The areas of the surfaces in the image

were 1448 and 3528 pixels. The angle between the faces of the tilted box at the bottom of the

image was found to be 93.2 °. The areas of the surfaces in the image were 1449 and 555 pixels.

The angles between the background plane (area was 10571 pixels) and the tops of the two boxes

placed squarely on the scanning table were found to be 0.307 ° (area of box top was 6040 pixels)

and 2.46 ° (area of box top was 250 pixels). As was expected, the errors were lower when the

surfaces had more pixels on which to perform the fitting.

8.3.4 Image of a soft drink can

In this experiment, a soft drink can was imaged and processed. Figure 8.20 is a rendered

perspective image of the three-dimensional data obtained from the ERIMAJSPS scanner. Notice
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Figure8.20:A renderedperspectiveviewof thethree-dimensionalimageof thesoftdrink can

againthatthedataisespeciallynoisyattheedgesof thecan.

Figure8.21showsthecurvaturesign-mapscomputedusingthe7× 7kerneloperators.Again,

thecurvaturelabellingsbearnoresemblanceto thesurfacesonewouldexpecttofind. NoRIDGE

region, for example, was found on the cylindrical surface of the can and the background plane

was not labelled as FLAT.

Figure 8.22 shows the smooth regions found by the variable-order segmentation program

and figure 8.23 shows the order of the bivariate polynomials fitted to the various surfaces.

Figure 8.24 shows the curvature sign-maps computed from the polynomial descriptors ob-

tained by variable-order segmentation. Once again, the curvature description of the cylindrical

surface of the can (a RIDGE region flanked by FLAT regions) is characteristic of cylindrical

surfaces. The background plane which was found to be FLAT was blacked-out in figure 8.24 to

make it easier to see the soft drink can.

Figures 8.25 and 8.26 are rendered perspective images of the three-dimensional surfaces found

in the soft drink can image by the hypothesis-verification operation. In figure 8.25, the can is



185

Figure8.21:Curvaturesign-mapof theimageof soft drink can obtained using kernel operators

Figure 8.22: Labelled image of smooth surfaces found in the soft drink can image by the variable-

order segmentation program
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Figure 8.23: The bivariate polynomials fitted to the smooth surfaces in the soft drink can im-

age'by the variable-order segmentation program. KEY: Horizontal lines-Planar;

Vertical lines-Bicubic; Crossed '+' hatching-Biquartic

Figure 8.24: Curvature sign-map of the soft drink can image obtained from the polynomial

descriptors extracted by variable-order segmentation

.=
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Figure 8.25: A rendered perspective view of the three-dimensional surfaces found in the soft

drink can image (the cylinder was approximated by a biquadratic surface)

Figure 8.26: A rendered perspective view of the three-dimensional surfaces found in the soft

drink can image (the can was generated as a true cylindrical surface)
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Figure 8.27: A rendered perspective view of the three-dimensional image of the cylinders

approximated by a biquadratic surface (the companion h'nearfunction for cylinders). Although no

appreciable difference can be seen in figure 8.26, the parametric description of the true cylinder

were extracted to generate it. The cylinder axis found is described by ( # = 100.65", _b= 26.2%

c_ = -2.4578 inches, c_ = 8.1643 inches) (see figure 6.10). The z intercept of the axis with the

y-z plane c_ was used because y intercept cy approaches infinity as the cylinder becomes parallel

to the y-axis.

8.3.5 Image of cylinders

In this experiment, a pair of cylinders (soft drink can and a lead pipe) in different orientations

were imaged and processed. Figure 8.27 is a rendered perspective image of the three-dimensional

data obtained from the ERIM/USPS scanner. Notice again that the data is especially noisy at the

edges of discontinuity.

Figure 8.28 shows the curvature sign-maps computed using the 7 x 7 kernel operators. Again,

the curvature labellings were fragmented and bear no resemblance to the surfaces one would
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Figure8.28:Curvaturesign-mapof theimageof cylindersobtainedusingkerneloperators

expectto find. No RIDGE regions, for example, were found on the cylindrical surfaces and the

background plane was not labelled as FLAT.

Figure 8.29 shows the smooth regions found by the variable-order segmentation program

and figure 8.30 shows the order of the bivariate polynomials fitted to the various surfaces.

Figure 8.31 shows the curvature sign-maps computed from the polynomial descriptors ob-

tained by variable-order segmentation. Once again, the curvature description of the cylindrical

surfaces in the image (a RIDGE region flanked by FLAT regions) are characteristic of cylindrical

surfaces. The background plane which was found to be FLAT was blacked-out in figure 8.31 to

make it easier to see the objects in the scene.

Figures 8.32 and 8.33 are rendered perspective images of the three-dimensional surfaces found

in the cylinders image by the hypothesis-verification operation. In figure 8.32, the cylinders were

approximated by a biquadratic surface (the companion linear function for cylinders). Figure 8.33,

the parametric description of the true cylinders were extracted to generate the image. Again,

there is no visual difference the two images. The parameters of the cylinder axis (see figure 6.10)
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Figure 8.29: Labelled image of smooth surfaces found in the cylinders image by the variable-

order segmentation program

nnml lUl uu lulu • • i • II _lnl,-"• II11tl II III 1111 i ,, .,,.. ,., . •i :1,i- ...i..il h! il.:l!ii_...i..tfli'i...... II|.lll!hltl, l
! llll_lllnlltiltlilllllllllllll lllllllllllliHIllllll_lllllllllllllllllll

' ...._:'"'"'........•,n.u,......I.,.'!i,_,!........,!,,ui.,!, ........,,_....,,.,._,!l_m• .,,!•.....,mL.,i ,Ii
IUiiiiitiiiiiiiiiliili!iii!iiiiii!IIIIUiiliii|iliiiiiliililIiliiiiiliiiliiii

IIIIIIIIIIII!1111111111111111111111111111111111111111111111 IIit111 IIII!II
I_1111 lhllllnl_llll lllrllllll iIiiIIiI II II IIIinlll IIi U ! u i MIU I IWl U III !11 I_111011 U I _ I I I IQI I loll I I U! 1U!I

m_lllllllllUlllllllllllllllllllllllllllltllllllllllllllllllllllnlllllllll
llllllllh'lllllllllllllllllllllllllllllllllll'dlllllllllllllllllllllllllllll

I-iiiImllll i1 Illll,rlllllllllllllllMlllllllllMIIIllllllllilllllnlllllllllg_lllll

*" "7.-.."_:: ..... " "r ,,:"_':"",-'r._'-l'r;.',-'x-'r:Xtl_nl'lU_|l'Hl_.i11__I''I"" -_--- •
I TI]

_ ".'11

n, , ,, lnnnn L

I II I111 I I

• I| I IIn

| ,,

I I II

I I

_ m

I I I I I I i I I

nun iiii • ell P I I I I,, -l.|..t,lldll
11 II ' I , ,I ---III_?I--I_'_SI_ II T

TT :1 ?5 i[ i I ]lllllrll

Figure 8.30: The bivariate polynomials fitted to the smooth surfaces in the cylinders image by the

variable-order segmentation program. KEY: Horizontal lines-Planar; Vertical

lines-Bicubic; Crossed '+' hatching-Biquartic
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Figure 8.31: Curvature sign-map of the cylinders image obtained from the polynomial descriptors

extracted by variable-order segmentation

Figure 8.32: A rendered perspective view of the three-dimensional surfaces found in the cylinders

image (the cylinders were approximated by biquadratic surfaces)
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Figure8.33:A renderedperspectiveviewof thethree-dimensionalsurfacesfoundin thecylinders
image(thecylindersweregeneratedastruecylindricalsurfaces)

of thecanwerefoundto be(0 = 100.65°, _b= 26.2%cz = -2.4578 inches, c= = 8.1643 inches)

(c= is the z intercept of the axis with the y-z plane - the y intercept cy approaches infinity as the

cylinder is parallel to the y-axis) ; and, those for the lead pipe were (9 = 1.48% _ = -0.467 °,

cz = 3.6044 inches, cy = 9.735 inches).

8.3.6 Image of blocks and cylinder

In this experiment, a collection of three blocks and a cylindrical lead pipe was imaged and

processed. Two of the blocks are placed one on another squarely on the scanning table. The

third block was tilted so that two surfaces were visible. Figure 8.34 is a rendered perspective

image of the three-dimensional data obtained from the ER/M/USPS scanner. The usual noise at

the range discontinuities is again apparent.

Figure 8.35 shows the curvature sign-maps computed using the 7 × 7 kernel operators. Again,

the curvature labellings were of little use for surface recognition. There was no perceptible
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Figure8.34:A renderedperspectiveview of thethree-dimensionalimageof the blocksand
cylinder

correlationbetweenthesign-maplabelsandthesurfacesknownto bepresent.

Figure8.36showsthesmoothregionsfoundby the variable-order segmentation program

T

and figure 8.37 shows the order of the bivariate polynomials fitted to the various surfaces.

Figure 8.38 shows the curvature sign-maps computed from the polynomial descriptors ob-

tained by variable-order segmentation. Once again, the characteristic curvature signature of the

cylindrical surface (a RIDGE region flanked by FLAT regions) was observed. The surfaces of

the blocks and the background plane were found to be FLAT.

Figures 8.39 and 8.40 are rendered perspective images of the three-dimensional surfaces

found in the blocks/cylinder image by the hypothesis-verification operation. In figure 8.39, the

cylinder was approximated by a biquadratic surface (the companion linear function for cylinders).

Figure 8.40, the parametric description of the true cylinder was extracted to generate it. Again,

there is no visual difference the two images. The parameters of the cylinder axis (see figure 6.10)

of the can were (0 = 1.39% _b= 0.71 °, cz = 3.563 inches, c_, = 13.4989 inches). The angles
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Figure8.35:Curvaturesign-mapof theblocks/cylinderimageobtained using kernel operators

Figure 8.36: Labelled image of smooth surfaces found in the blocks/cylinder image by the

variable-order segmentation program
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Figure 8.37: The bivariate polynomials fitted to the smooth surfaces in the blocks/cylinder im-

age by the variable-order segmentation program. KEY: Horizontal lines-Planar;
Vertical lines-Bicubic; Crossed '-t-' hatching-Biquartic

Figure 8.38: Curvature sign-map of the blocks/cylinder image obtained from the polynomial

descriptors extracted by variable-order segmentation
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Figure 8.39: A rendered perspective view of the three-dimensional surfaces found in the

blocks/cylinder image (the cylinder was approximated by a biquadratic surface)

Figure 8.40: A rendered perspective view of the three-dimensional surfaces found in the image

of blocks and a cylinder (the cylinder was generated as a true cylindrical surface)
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Figure 8.41: A rendered perspective view of the three-dimensional image of the chamfered plane

between the background plane (area was 9502 pixels) and the tops of the two boxes whose bases

are parallel to the scanning table were found to be 0.944 ° (area of box top was 2280 pixels) and

0.375 ° (area of box top was 4305 pixels). Again, the errors were lower when the surfaces had

more pixels on which to perform the fitting. The steeper face of the tilted block was too noisy

to make a good planar fit.

8.3.7 Image of a chamfered plane

In this experiment, an aluminum sheet bent to produce a plane chamfering smoothly into a

curved surface was imaged and processed. This is precisely the problem discussed in section 5.8

and shown in figure 5.4. Figure 8.41 is a rendered perspective image of the three-dimensional

data using the ERIM/USPS scanner.

Figure 8.42 shows the curvature sign-maps computed using the 7 × 7 kernel operators. Again,

the curvature labellings were of little use for surface recognition. There was no perceptible

difference between the labelling of the planar and curved portions of the object.
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Figure8.42:Curvaturesign-mapof thechamferedplaneimageobtainedusingkernelopera.tors

Figure8.43showsthesmoothregionsfoundby the variable-order segmentation program

and figure 8.44 shows the order of the bivariate polynomials fitted to the various surfaces.

Figure 8.45 shows the curvature sign-maps computed from the polynomial descriptors ob-

tained by variable-order segmentation. The planar portion was labelled as FLAT. Most of the

curved surface was correctly labelled as a RIDGE region. A small portion of the curved surface

was erroneously labelled as FLAT.

To separate the plane from the curved chamfer (and so determine its orientation in three-

dimensional space), the split-merge algorithm for plane extraction was applied. As discussed

in section 5.8, the splitting was performed by applying equation 5.6 to generate the like-normal

neighbourhood image shown in figure 8.46.

The surfaces were then merged using the merging algorithm described in section 5.5. The

resulting segmentation is shown in figure 8.47 in which each surface was labelled with a unique

shade. The small patch at the lower right hand comer could not be fit to the plane because the

original aluminium sheet had a crease at that comer.
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Figure 8.43: Labelled image of smooth surfaces found in the chamfered plane image by the

variable-order segmentation program
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Figure 8.44: The bivariate polynomials fitted to the smooth surfaces in the chamfered plane im-

age by the variable-order segmentation program. KEY: Horizontad lines-Planar;
Crossed '+' hatching-Biquartic
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Figure 8.45: Curvature sign-map of the chamfered plane image obtained from the polynomial

descriptors extracted by variable-order segmentation

Figure 8.46: The like-normal neighbourhood image for the chamfered plane
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Figure8.47:Thefinalsegmentationfor thechamferedplane

Figure8.48:A renderedperspectiveviewof thethree-dimensionalsurfacesfoundin thecham-
feredplaneimage.
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Figure8.49:A renderedperspectiveviewof thethree-dimensionalimageof thepipeelbow

Figure8.48is a renderedperspectiveimageof thethree-dimensionalsurfacesfoundin the

chamferedplaneimagebythehypothesis-verificationoperation.Theplaneactuallygrewslightly

into thecurvedregion.Thiscouldnot beavoided.If thethresholdfor mergingregionswas

madetoo sensitive,thenoisein the imagewouldhavestoppedtheregionmergingbeforethe

entireplanewascaptured.

8.3.8 Image of a pipe elbow

In this experiment, fiberglass pipe elbow comprising two straight cylindrical pipe segments

merging together with a gradual 135 ° bend smoothly into a curved surface was imaged and

processed. To extract the parametric description of the two cylinders, the merge-split algorithm

for cylindrical surface recovery described in section 5.9 was applied. Figure 8.49 is a rendered

perspective image of the three-dimensional data using the ERIM/USPS scanner. The image is

much noisier than the preceding ones because of the fiberglass material is translucent to the laser

radiation and has specular characteristics.
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Figure8.50:Curvaturesign-mapof thepipeelbowimageobtainedusingkerneloperators

Figure8.50showsthecurvaturesign-mapscomputedusingthe7x 7kemeloperators.Again,

little canbemadeof thecurvaturelabelthuscomputed.

Figure8.51showsthesmoothregionsfoundby the variable-order segmentation program.

All the surfaces found were approximated by biquartic functions. Figure 8.52 shows a rendered

three-dimensional reconstruction of the surfaces found. Notice that the entire pipe segment was

approximated by one surface, and that the surface is warped (not cylindrical).

Figure 8.53 shows the curvature sign-maps computed from the polynomial descriptors ob-

tained by variable-order segmentation. The curvature description of the straight segments of the

pipe (a RIDGE region flanked by FLAT regions) is characteristic of cylindrical surfaces. At the

inside of the bend, VALLEY and SADDLE VALLEY regions were found. These describe precisely

the types of surface curves actually present. The background plane which was found to be FLAT

was blacked-out in figure 8.31 to make it easier to see the pipe elbow.

To separate the cylinders and to determine their orientations in three-dimensional space,

the split-merge algorithm for cylinder extraction was employed. As discussed in section 5.9,
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Figure 8.51: Labelled image of smooth surfaces found in the bent pipe segment image by the

variable-order segmentation program

Figure 8.52: The biqu_i_surfaccs fitted to the smooth surfaces in the pipe elbow image by the

variable-order segmentation program.
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Figure8.53:Curvaturesign-mapof the pipe elbow image obtained from the polynomial descrip-

tors extracted by variable-order segmentation

the entire elbow was divided into acceleration bands (see figure 5.6). The surfaces were then

merged using the merging algorithm described in section 5.5. The acceleration bands and the

resulting segmentation are shown in figure 8.54.

Figures 8.55 and 8.56 are rendered perspective images of the three-dimensional surfaces

found in the pipe elbow image by the hypothesis-verification operation. In figure 8.55, the cylin-

ders were approximated by a biquadratic surface (the companion linear function for cylinders).

Figure 8.33, the parametric description of the true cylinders were extracted to generate the im-

age. The parameters of the cylinder axes (see figure 6.10) were found to be (0 = 157.78 ° or

-22.22 °, q_= -2.05 °, cz = -5.268 inches, c_ = 17.573 inches) and (0 = 23.999 °, _b= 2.038 °,

cz = 4.482 inches, cu = 8.579 inches). This constitutes a bend of 133.78 °. This differs from

the 135 ° of the actual pipe by 1.22 ° .

8.3.9 Image of PVC pipe ring
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Figure 8.54: The acceleration-band image for the pipe elbow

Figure 8.55: A rendered perspective view of the three-dimensional surfaces found in the pipe

elbow image (the cylinders were approximated by biquadratic surfaces).
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Figure 8.56: A rendered perspective view of the three-dimensional surfaces found in the pipe

elbow image (the cylinders were generated as true cylindrical surfaces).

Figure 8.57: A rendered perspective view of the three-dimensional image of the PVC pipe ring
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Figure8.58:Curvaturesign-mapof thePVCpiperingimageobtainedusingkerneloperators

In thisexperiment,aringof PVCpipesections(fourstraight1½inchdiameterpipesegments

andfour90° elbows)wasimagedandprocessed.Figure8.57is arenderedperspectiveimageof

thethree-dimensionaldataobtainedfromtheERIM/USPSscanner.The usual noise at the range

discontinuities is again apparent.

Figure 8.58 shows the curvature sign-maps computed using the 7 x 7 kernel operators. Again,

there waw no perceptible correlation between the curvature sign-map labels and the surfaces

known to be present.

Figure 8.59 shows the curvature sign-maps computed from the polynomial descriptors ob-

tained by variable-order segmentation (The version of the variable-order segmentation program

applied throughout the previously described experiments actually failed to segment the image

satisfactorily at first - the entire ring was fitted with a 'Mexican hat'-like surface. To obtain a

satisfactory segmentation, the image was augmented by a removal of edge points before variable-

order segmentation program was run. The edge points were extracted by a morphological edge

detector). Once again, the characteristic curvature signature of the cylindrical surface (a RIDGE
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Segment O 4) cz (inches) cy or c= (inches)

Top 0.538 ° - 0.991 ° 5.511 7.43(%)

Right 90.117 ° -0.3818 ° 5.063 15.034(c=)

Bottom 0.25 ° -0.991 ° 5.386 15.64(cy)

Left 90.0344 ° -0.971 ° 5.508 7.086(c=)

region flanked by FLAT regions) is evident. The background plane was found to be FLAT.

Figures 8.60 and 8.61 are rendered perspective images of the three-dimensional surfaces

found in the PVC pipe ring image by the hypothesis-verification operation. In figure 8.60,

the cylinders were approximated by biquadratic surfaces (the companion linear function for

cylinders). Figure 8.61, the parametric description of the true cylinders was extracted to generate

them. Again, there is no visual difference the two images. The parameters of the cylinder axes

(see figure 6.10) of the can were:

For the horizontal pipe segments, the z intercept of the cylinder axis with the y-z plane (c=)

Figure 8.59: Curvature sign-map of the PVC pipe ring image obtained from the polynomial

descriptors extracted by variable-order segmentation

_.-_r.-i._ _=_
_----:_-,*• _:.:-:.= _---

_-_:i_::_':'::,'_: = --- _,_:t_,--
_i:i:!:i::, it;_.,._,.,Y.,,.:._+T+_:rJ::_-_-:¢::L+-_--
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Figure 8.60: A rendered perspective view of the three-dimensional surfaces found in the PVC

pipe ring image (the straight cylindrical segments were approximated by biquadratic

surfaces, and the 'comers' by bicubic patches)

Figure 8.61: A rendered perspective view of the three-dimensional surfaces found in the image

of blocks and a cylinder (the straight cylindrical segments were generated as true

cylindrical surfaces)
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wascomputedandfor theverticalpipesegments,the y intercept cu was computed.

As can be seen, the error in x-y orientation (0) was no more than 0.5 °.



CHAPTER IX

CONCLUSIONS

i

When work began on this thesis, it was the author's purpose to investigate issues pertaining

to three-dimensional object recognition and pose determination per se. Simply put, the intent

was to develop algorithms which would permit a robot system equipped with a laser range

imaging system to recognize and locate an object and to perform an operation such as drilling

a hole in it. It was thought that the surface descriptors generated by work such as Besl and

Jain's variable-order segmentation algorithm [22, 25, 26] would provide a platform for such an

endeavour. Such optimism was quickly proven wrong. Much needed to be done to shore up

the foundations before the house of recognition and location may be erected. Among them were

the abilities to bridge the gap between low and high level vision, to make reliable hypotheses

regarding the scene, and to extract the parametric descriptions of the constructed geometric forms

of which the target objects constitute. The work done on this thesis addresses these issues.

We shall conclude this work by summarizing the findings of the work of this thesis and to

outline the research which remains to solve the original problem.

9.1 Summary

An abstraction-based paradigm for organizing perceptual tasks was developed and described

in chapter I. It provides a means to span the crevasse between low and high level vision by

• an explicit general to specific refinement process. Within this paradigm, the task of specifying

212
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whatis in a scenebecomesoneof makingstrongerandstrongerassumptionsaboutwhatis in

the image.Thisstrategywasappliedto theprocessingof laserrangeimageryasoutlinedin the

blockdiagramof figure3.4.

Withinthe purviewof abstraction-based refinement an initial symbolic description of the

scene is necessary. The first such description was obtained in the form of smooth regions which

could be approximated by bivafiate polynomial surfaces. These were generated using Besl and

Jain's variable-order segmentation program applying only the assumption that smooth contiguous

regions could be modelled by bivariate polynomials.

A method for obtaining robust curvature-based surface labelling was demonstrated for the

next step in the refinement process. While such differential geometry-based description has been

proposed in the literature, the computation of these features directly from the imagery by kernel-

type digital differentiation operators proved unstable. In the experiments presented, the Gaussian

and mean curvature sign-map was computed on the polynomial description obtained in the

previous abstraction process. As long as the region fits were faithful to the data, the information

through the extended surface could be drawn upon to support the curvature computation. This

was discussed in section 4.3 (section 4.3.4 in particular).

Once a hypothesis can be made as to the surfaces of construction present in the scene, these

have to be verified and the orienting parameters have to be extracted. The majority of object

recognition work found in the literature operate on polyhedra. This is because planes are the only

surfaces which satisfy two criteria. They describe precisely the surface of construction and their

algebraic description is linear in terms of their orienting parameters. The first criterion permits

the recovery of the object centered coordinate system and the second makes their computation

possible. Most constructed forms, however, are non-linear in terms of their orienting parameters.

Numeric methods for the extraction of these parameters require good estimates of the parameter

values. This 'chicken and egg' problem was approached using the concept of companion linear
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forms. These forms which are linear in their orienting parameters approximate their non-linear

counterparts and are capable of estimating their orienting parameters. Companion linear forms

are thus useful both for the detection and pose determination constructed forms.

A study was done on the application of the biquadratic form as the companion linear form

for cylinders in sections 4.4 and 6.1. These estimates were then used in a non-linear fitting

phase to determine the orienting parameters of the cylinders. The non-linear fitting was done

with an implementation of the Levenberg-Marquardt algorithm. Results show that the parametric

estimation from biquadratic fits were robust and accurate. In tests with synthetically generated

cylinders (whose orientations are well known), the estimation was accurate within two hundredth

of a degree for all orientations. In the experiments with the image of the fiberglass pipe elbow

which was very noisy, the angle computed for the bend was off by 1.22 °, and in the PVC pipe

ring image, the angular errors did not exceed 0.5 °.

It was shown, in chapter V, that ALL region split-merge operations are based upon hypotheses

of the objects being constituted in the merging process. The criteria for region splitting and

merging were defined. A hypothesis (assumption) guided split-merge algorithm was developed

for determining the pose of smoothly merging planes and cylinders. For planes which merge

smoothly into curved surfaces, like-normal neighbourhoods were advanced as a means of splitting

the smooth surface containing the plane. The splitted regions were then merged to extract the

plane, For cylinders which meld smoothly into other surfaces along their axes, acceleration

bands were applied for region splitting and the biquadratic function was used to perform the

region merging. Both operations were demonstrated in the experiments presented.

A fast algorithm for the extraction of the boundaries of nm-length regions was developed

(chapter VII). This finite-state machine algorithm takes advantage of the run list topology and

boundary direction constraints implicit in the rim-length encoding of the region. It extracts the

external boundary of the region and the boundaries of all the holes in the region.



215

As mentionedin section3.4,the laserrangedata(aftertransformationto three-dimensional

Cartesiancoordinates)areusedin everystageof theabstractionprocess.As moreandmore

specifichypothesesareimposed,thesystemremainsdata-bound.Thehypothesesarealways

testedagainsttheoriginaldata,andtheextractionof theparametricdescriptionof theconstructed

geometricformis achievedby fittingtheparametricmodelsto thedata.

9.2 Directions for Future Research

The measure of the success and relevance of this work is the extent to which we are closer

to being able to recognize, locate and perform an operation on an industrial work piece (like

drilling a specified hole). It has uncovered some areas which require more research before the

task in question can be accomplished.

An architecture needs to be designed to implement the abstraction-based recognition and

pose determination paradigm. A system which will recognize and determine the pose of objects

with cylindrical and planar surfaces given laser imagery could be built directly on the work of

this thesis. An aitemate hierarchy of abstraction for recognition in intensity images could also

be defined. The same architecture should operate on such a hierarchy.

More work needs to be done on linear-companion forms to cover all constructed geometric

surfaces like cones, spheres etc. A promising set of functions for this task is superquadrics

because of their ability to describe arbitrarily complex regular shapes. A cone, for example,

could be approximated by one end of a very eccentric ellipsoid. The axis of the cone would be

colinear with one principal axis of such an ellipsoid and the eccentricity of the ellipsoid would

provide an estimation of the angle of taper of the cone.

In this work, the variable-order segmentation excluded most of the noise spikes (outliers),

permitting the parameter estimation to work only on the 'good' data. The sensor's noise char-

acteristics were not otherwise handled. In the ERIM/USPS scanner, for example, the surfaces

imaged appear to possess a slight corrugation which can be seen in the images in chapter VIII.
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Thisarisesfromthescanningregimenof thescanner.It wasdifficulttodeterminealeast-squares

thresholdwhichwouldallowa regiongrowin a directionparallelto thecorrugationandstop

quicklywhenthesurfacereallybends.This identifiestheapplicationof robustmethodsandthe

applicationof sensornoisemodelsin thefittingprocessnecessaryfor thedeterminationof the

orientingparametersof thevisiblesurfaces.

Workalsoneedsto bedonein thefine-tuningregionsat boundaries.In theexampleof the

planemergingintoacurvedchamfer(seefigure8.55),theplanarsurfacegrewslightlyinto the

curvedchamfer.Surfacemeldingfunctionsmayhidethiserrorfromtheviewer,butsuchfixes

are only cosmetic. They will not remove the errors in the estimation of the orientation of the

plane introduced by the errant data. Better noise models will ameliorate this problem, but not

solve it completely. One approach, perhaps, may be a 'retraction' procedure. The initial region

growing could be aggressive to allow the surface to grow over the noisy data. Once the surface

stops growing, overshoots must be expected. A fine tuning process may retract the surface from

its boundaries using finer thresholds. This constitutes kind of a scale space approach in ?(2

threshold space.

Given a model of the work piece in terms of its constructed geometric surfaces, the algorithms

developed in this thesis will extract the orienting parametric description of each surface. In order

to determine the affine transformation of the entire object, methods for conflict resolution must

be applied. Such methods must be able to reason with both numeric and symbolic information.

For example, the significance ascribed to the orienting parameters of planes in an image should

depend on the region sizes occupied by the planes and the degree to which it is oblique to the

viewing direction. The estimation of the angle of orientation of a cylinder axis in the plane

perpendicular to the viewing direction is more precise than the estimation of the angle of tilt of

the axis away from the plane. Possible approaches for the solution of this problem are constraint-

based methods, extended Hough transforms and neural networks. These techniques may then be
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appliedin a completeobjectrecognitionandposedeterminationsystem.

F'mally,thegenerationof recognitionmodels(for usein a recognitionsystem)from CAD

descriptionsof objectsis anareawherefutureresearchisneeded.Suchmodelsshouldprovidea

recognitionsystemwith thetypesof surfacesvisibleandthecurvaturesignaturesonemayexpect.

Sincesurfacereflectivitycharacteristics(e.g.specularity)affecttheimagingnoise,methodsmust

beinvestigatedto incorporatetheseintothemodels.
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